Abstract: (10564 Views)
Flexible solar panels of a satellite during a maneuver get excited and vibrate. Such vibrations will cause some oscillatory disturbance forces that affect the satellite rigid body. Vibrations cause cracks in flexible solar panels and these cracks, because of fatigue, make panels fracture. Moreover, satellite rigid body which does accurate works like capturing picture of earth surface or sending information to earth will be disturbed as a result of vibration. Therefore it needs to be prevented against resonance. In this paper, dynamic equations of a satellite including cubical rigid body are extracted, then with combination of ANSYS and ADAMS softwares, the model is simulated and its responses has been compared with analytical model. New control strategy for reducing the vibration of flexible bodies of the multi body system, includes rigid and flexible bodies, is proposed. With eliminate oscillation from rigid body angular velocity, vibrations amplitude of flexible parts will be reduced. For this purpose, an adaptive control system and a notch filter is used to eliminate the oscillation of measurement procedure caused by the vibration of flexible solar panels. Adaptive control system responses with considering resonance and without resonance, is shown and merits of this method is evaluated.
Article Type:
Research Article |
Subject:
Vibration|Aerospace Structures|Control Received: 2014/08/14 | Accepted: 2014/09/6 | Published: 2014/10/28