مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر استفاده از بوم بر روی نحوه پخش پلوم نفتی به روش هیدرودینامیک ذرات هموار

نویسندگان
1 دانشجوی دکتری تخصصی رشته فیزیک دریا
2 استادیار گروه مهندسی مکانیک دانشگاه یاسوج
3 استادیار، گروه فیزیک دریا، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران
4 گروه فیزیک دریا، دانشگاه آزاد اسلامی واحد تهران شمال، تهران
چکیده
پخش آلاینده‌های روغنی یکی از مشکلات مهم در محیط زیست دریایی است که توجه بسیاری از محققان را به خود جلب کرده است. در این مقاله، شبیه سازی اثر بوم بر روی پخش پلوم نفت با استفاده از روش هیدرودینامیک ذرات هموار مورد بررسی قرار گرفته است. کد متن باز SPHysics2D با اضافه کردن اثر کشش سطحی و یک فشار اضافی به معادله مومنتوم، به دو فاز توسعه یافته است. چندین مسئله از دینامیک پلوم شبیه سازی شده است و عملکرد کد توسعه یافته ارزیابی می‌شود. ابتدا، نحوه صعود یک پلوم روغن با نسبت چگالی 0.8 شبیه سازی شده و نتایج بدست آمده با حل تحلیلی مقایسه شده است. سپس، نحوه صعود یک پلوم با نسبت چگالی 0.1 شبیه سازی شده و تغییرات زمانی مرکز جرم و سرعت صعود نشان داده شده است. شبیه سازی موج نویدال روی سواحل انجام و با نتایج تجربی مقایسه شده است. در نهایت، تاثیر بوم با زاویه‌های مختلف روی پخش پلوم روغن مورد بررسی قرار گرفته است. پس از اعتبارسنجی کد با مسئله‌های مختلف، نحوه صعود و پخش پلوم روغن در ساحل بدون اعمال بوم شبیه سازی شده و درصد پلوم عبوری از مکانی مشخص محاسبه شده است. سپس تاثیر بوم با زاویه‌های مختلف در جلوگیری از پخش پلوم روغن مورد بررسی قرار گرفته و با بدست آوردن کمترین درصد پلوم عبوری، بهترین زاویه جهت جلوگیری از پخش پلوم روغن انتخاب شده است. از این رو، روش SPH می‌تواند یک روش بهینه برای شبیه سازی عددی مسئله‌های پیچیده از جمله دینامیک موج آب باشد.
کلیدواژه‌ها

عنوان مقاله English

The effects of boom on oil plume dispersion using smoothed particle hydrodynamics‌ (SPH)

نویسندگان English

Mehdi Rostami Hosseinkhani1 1
Pourya Omidvar 2
Sara Allahyaribeik 3
Masoud Torabi Azad 4
1 PhD Candidate of Physical Oceanography
3 Department of Physical Oceanography, Faculty of Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Department of Physical Oceanography, Faculty of North Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده English

Dispersion of oil pollutants is one of the important topics of great concern which should be modeled for a wide range of hydrodynamic systems such as seas and oceans. In this paper, the effects of using booms on the oil plume are simulated using the Smoothed Particle Hydrodynamics (SPH) Method. The open-source SPHysics2D code is developed into two phase by adding the effects of surface tension and an added pressure term to the momentum equation. Several problems of plume dynamics are shown, and the performance of the developed code is evaluated. Firstly, the rising pattern of an oil plume with the density ratio of 0.8 is simulated where the results are compared with the analytical solution. Then, the rising pattern of a plume with density ratio of 0.1 is simulated and the time evolutions of the rising velocity and center of mass are shown. The simulation of the cnoidal wave on beaches is conducted and compared with an available experimental result. Finally, the effects of a boom with different angles on the oil plume dispersion are investigated. It will be shown that the SPH method could be an optimized method for the numerical simulation of the complex problems such as water wave dynamics and two-phase flows.

کلیدواژه‌ها English

Smoothed Particle Hydrodynamics
Two-phase flows
Boom
Oil plume dispersion
[1] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, Journal of Computational Physics, Vol. 222, No. 2, pp. 769-795, 2007.
[2] F. A. Ghannad, F. Vafaei, M. M. Aragh, simulation of numerical model for oil pollution on the sea, International Journal of Maritime Technology, Vol. 6, No.11, pp. 37-43, 2010. (in Persian فارسی(
[3] Z. Sultana, Finite Element Simulation of Interfacial Flows on Unstructured Meshes using a Second-order Accurate VOF Method, PhD Thesis, University of Toronto, Toronto, 2012.
[4] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, Vol. 181, No. 3, pp. 375-389, 1977.
[5] J. J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, Vol. 110, No. 2, pp. 399-406, 1994.
[6] P. Omidvar, H. Norouzi, A. Zarghami, Smoothed Particle Hydrodynamics for water wave propagation in a channel, International Journal of Modern Physics C, Vol. 26, No. 08, pp. 1550085, 2015.
[7] P. Omidvar, P. K. Stansby, B. D. Rogers, SPH for 3D floating bodies using variable mass particle distribution, International Journal for Numerical Methods in Fluids, Vol. 72, No. 4, pp. 427-452, 2013.
[8] P. Omidvar, P. K. Stansby, B. D. Rogers, Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass, International Journal for Numerical Methods in Fluids, Vol. 68, No. 6, pp. 686-705, 2012.
[9] P. Omidvar, O. Farghadani, P. Nikeghbali, SPH for impact force and ricochet behavior of water-entry bodies, International Journal of Modern Physics C, Vol. 28, No. 10, pp. 1750119, 2017.
[10] M. Pourabdian, P. Omidvar, M. R. Morad, Multiphase simulation of liquid jet breakup using smoothed particle hydrodynamics, International Journal of Modern Physics C, Vol. 28, No. 04, pp. 1750054, 2017.
[11] M. Pourabdian, P. Omidvar, M. R. Morad, Numerical simulation of liquid jet breakup using smoothed particle hydrodynamics (SPH), Modares Mechanical Engineering, Vol. 16, No. 3, pp. 55-66, 2016. (in Persian فارسی(
[12] H. Zamanipour, P. Omidvar, A. Tayebi, Investigation of convectiondiffusion process in a two-phase air-water flow using Smoothed Particle Hydrodynamics, Modares Mechanical Engineering, Vol. 17, No.2, pp. 115- 125, 2017. (in Persian فارسی(
[13] P. Omidvar, P. Nikeghbali, Simulation of violent water flows over a movable bed using smoothed particle hydrodynamics, Journal of Marine Science and Technology, Vol. 22, No. 2, pp. 270-287, 2017.
[14] P. Nikeghbali, P. Omidvar, Investigation of Breaking and Undular Tidal Bores on a Movable Bed Using SPH, Journal of Waterway, Port, Coastal, and Ocean Engineering,Vol. 144, No. 2, pp. 04017040, 2017.
[15] P. W. Cleary, J. J. Monaghan, Conduction Modelling Using Smoothed Particle Hydrodynamics, Journal of Computational Physics, Vol. 148, No. 1, pp. 227-264, 1999.
[16] J. P. Morris, Simulating surface tension with smoothed particle hydrodynamics, International Journal for Numerical Methods in Fluids, Vol. 33, No. 3, pp. 333-353, 2000.
[17] A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, Vol. 191, No. 2, pp. 448-475, 2003.
[18] X. Y. Hu, N. A. Adams, A multi-phase SPH method for macroscopic and mesoscopic flows, Journal of Computational Physics, Vol. 213, No. 2, pp. 844-861, 2006.
[19] N. Grenier, M. Antuono, A. Colagrossi, D. L. Touz, B. Alessandrini, An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, Journal of Computational Physics, Vol. 228, No. 22, pp. 8380-8393, 2009.
[20] A. K. Das, P. K. Das, Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation, Chemical Engineering Science, Vol. 64, No. 10, pp. 2281-2290, 2009.
[21] J. Monaghan, A turbulence model for Smoothed Particle Hydrodynamics, European Journal of Mechanics-B/Fluids, Vol. 30, No. 4, pp. 360-370, 2011.
[22] J. Monaghan, A. Rafiee, A simple SPH algorithm for multi‐fluid flow with high density ratios, International Journal for Numerical Methods in Fluids, Vol. 71, No. 5, pp. 537-561, 2013.
[23] D. Violeau, B. D. Rogers, Smoothed particle hydrodynamics (SPH) for freesurface flows: past, present and future, Journal of Hydraulic Research, Vol. 54, No. 1, pp. 1-26, 2016.
[24] M. Rostami, P. Omidvar, Smoothed Particle Hydrodinamics for the Rising Pattern of Oil Droplets, Journal of Fluid Engineering, 2018, In press.
[25] J. J. Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics, Vol. 68, No. 8, pp. 1703, 2005.
[26] A. Colagrossi, M. Landrini, Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics, Vol. 191, pp. 448-475, 2003.
[27] G. K. Batchelor, An Introduction to Fluid Dynamics: Cambridge University Press, pp. 14-28, 2000.
[28] J. P. Morris, P. J. Fox, Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, Vol. 136, No. 1, pp. 214-226, 1997.
[29] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in computational Mathematics, Vol. 4, No. 1, pp. 389-396, 1995.
[30] Y. Yovel, M. O. Franz, P. Stilz, H. U. Schnitzler, Plant classification from bat-like echolocation signals, PLoS Computational Biology, Vol. 4, No. 3, pp. 1-13, 2008.
[31] J. J. Monaghan, A. Kos, Solitary Waves on a Cretan Beach, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, No. 3, pp. 145- 155, 1999.
[32] P. Omidvar, Wave loading on bodies in the free surface using Smoothed Particle Hydrodynamics (SPH), PhD Thesis, UK, Manchester, pp. 75-85, 2010.
[33] J. J. Monaghan, On the problem of penetration in particle methods, Journal of Computational Physics, Vol. 82, No. 1, pp. 1-15, 1989.
[34] S. R. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two‐dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, Vol. 60, No. 11, pp. 1259-1288, 2009.
[35] K. Zheng, Z.C. Sun, J.W. Sun, Z.M. Zhang, G.P. Yang, Z. Feng, Numerical simulations of water wave dynamics based on SPH methods, Journal of Hydrodynamics, Vol. 21, No. 6, pp. 843-850, 2009.