مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

یک چارچوب جدید طراحی بهینه چند موضوعی مقاوم در طراحی مفهومی یک وسیله زیر سطحی خود گردان

نویسندگان
1 دانشگاه صنعتی امیر کبیر
2 دانشیار دانشکده مهندسی هوافضای دانشگاه صنعتی امیرکبیر
3 استاد/دانشگاه امیرکبیر
چکیده
در فرآیند طراحی یک وسیله زیر سطحی به مدل سازی ریاضی زیر سیستم ها/موضوعات درگیر مانند هدایت وکنترل، محموله، هیدرودینامیک، پیشرانش، سازه، طراحی مسیر و عملکرد و روابط متقابل آنها نیاز است. در فازهای ابتدایی طراحی این وسیله همواره متغیرهای طراحی و پارامترهای سیستم با درجه بالایی از عدم قطعیت روبرو هستند. این عدم قطعیت ها باعث چالش در فرآیند طراحی شده و عملکرد وسیله را تحت تاثیر مستقیم قرار می دهند. روشهای طراحی بهینه چند موضوعی رهیافتی جهت طراحی بهینه و امکانپذیر و روشهای طراحی مقاوم رویکردی جهت طراحی غیر حساس نسبت به تغییرات متغییرهای طراحی هستند. ترکیب روشهای طراحی بهینه چند موضوعی و روشهای طراحی مقاوم با یکدیگر برای طراحی یک سیستم پیچیده از منظر بهینگی، امکانپذیری و مقاوم اهمیت ویژه ای دارد. در این مقاله یک روش بهینه سازی چند موضوعی مقاوم جهت طراحی مفهومی یک وسیله زیر سطحی خودگردان با در نظر گرفتن تاکتیک و سیستم به صورت همزمان تحت عدم قطعیت های طراحی توسعه یافته است. برای این منظور روش امکانپذیر چند موضوعی غیر قطعی به عنوان چارچوب بهینه سازی چند موضوعی تحت عدم قطعیت معرفی می گردد. همچنین دو روش تکاملی مبتنی بر پارتو به عنوان دو روش بهینه سازی چند هدفه مورد استفاده قرار گرفته و نتایج دو روش مقایسه می‌گردد. نتایج این تحقیق نشان می دهد، چارچوب جدید طراحی چند موضوعی بهینه مقاوم معرفی شده می تواند با دقت مناسب یک مجموعه طراحی مقاوم را برای یک وسیله زیر سطحی با زیر سیستم های غیرقطعی و کوپله را ارائه دهد
کلیدواژه‌ها

عنوان مقاله English

A new robust multidisciplinary design optimization framework for conceptual design of an autonomous underwater vehicle

نویسندگان English

mohsen bidoki 1
mehdi mortazavi 2
mehdi sabzeparvar 3
2 aerospace department, amirkabir university of technology
3 aerospace department, amirkabir university of technology
چکیده English

The design process of an Autonomous Underwater Vehicle (AUV) requires mathematical model of subsystems or disciplines such as guidance and control, payload, hydrodynamic, propulsion, structure, trajectory and performance and their interactions. In early phases of design, an AUV are often encountered with a high degree of uncertainty in the design variables and parameters of system. These uncertainties present challenges to the design process and have a direct effect on the AUV performance. Multidisciplinary Design Optimization (MDO) is an approach to find both optimum and feasible design and robust design is an approach to make the system performance insensitive to variations of design variables and parameters. It is significant to integrate robust design and MDO for designing complex engineering systems in optimal, feasible and robust senses. In this paper, an improved robust MDO methodology is developed for conceptual design of an AUV under uncertainty with considering tactic and system design simultaneously. In this methodology, Uncertain MultiDisciplinary Feasible (UMDF) framework is introduced as uncertain MDO framework. Two evolutionary algorithms are also used as Pareto-based Multi-Objective optimizers and results of two algorithms are compared. The results of this research illustrate that the new proposed robust multidisciplinary design optimization framework can carefully set a robust design for an AUV with coupled uncertain disciplines.

کلیدواژه‌ها English

MRDO
AUV
UMDF
Simultaneously tactic and system design
[1] M. Yukish, L. Bennett, T. Simpson, Requirements on MDO imposed by the undersea vehicle conceptual design problem, Presented at the 8th AIAA Symposium on Multidisciplinary Analysis and Optimization, AIAA-2000- 4816, Long Beach, CA, U.S.A, 2000.
[2] A. Belegundu, E. Halberg, M. Yukish, T. Simpson, Attribute-based multidisciplinary optimization of undersea vehicles, Presented at the 8th AIAA/USAF /NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA-2000-4865, Long Beach, CA, U.S.A, 2000.
[3] D. M. Charles, W. S. Timothy, H. K. Paul, Y. Mike, Multidisciplinary design optimization testbed based on autonomous underwater vehicle design, Presented at 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, 2002.
[4] W. B. Todd, V. G. Ramana, E. R. Matthew, System level optimization of undersea vehicles subject to mission performance, Presented at the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA 2008-6064, Victoria, British Columbia, Canada, 2008.
[5] Y. P. Zhang, J. Y. Zhang, W. J. Ying, Torpedo guidance system multidisciplinary design based on IDF, IEEE computer society. Presented at the 2013 Fifth International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2013.
[6] W. Luo, W. Lyu, An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots, Ocean Engineering, Vol. 104, No. 12, pp. 686–697, 2015.
[7] G. Taguchi, A. J. Rafanelli, Taguchi on robust technology development: Bringing quality engineering upstream, Electronic Packaging, Vol. 11, No. 8, pp. 116-161, 1994.
[8] J. Chen, X. Renbin, Z. Yifang, A response surface based hierarchical approach to multidisciplinary robust optimization design, Advance Manufacture Technology, Vol. 26, No. 4, pp. 301–309, 2005.
[9] M. Diez, D. Peri, Robust optimization for ship conceptual design, Ocean Engineering, Vol. 37, No. 12, pp. 966–977, 2010.
[10] K. Zaman, S. Mahadevan, Robustness-Based design optimization of multidisciplinary system under epistemic uncertainty, AIAA, Vol. 51, No. 5, pp. 1021-1031, 2013.
[11] N. V. Nguyen, T. Maxim, H. Park, S. Kim, J. Lee, A multidisciplinary robust optimization framework for UAV conceptual design, Aeronautical, Vol. 118, No. 1200, pp. 123-142, 2014.
[12] C. D. McAllister, Uncertainty Propagation in Multidisciplinary Design Optimization, PhD Thesis, the graduate school, the Pennsylvania state university, 2002.
[13] A. Frits, Formulation of an Integrated Robust Design and Tactics Optimization Process for Undersea Weapon Systems, PhD Thesis, School of Aerospace Engineering, Georgia Institute of Technology, 2004.
[14] A. Khairul, R. Tapabrata, G. A. Sreenatha, A new robust design optimization approach for unmanned underwater vehicle design, Proc IMechE Part M: Engineering for the Maritime Environment, Vol. 226, No. 3, pp. 235–249, 2012.
[15] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor: First edition, University of Michigan Press, pp.121-153, 1975.
[16] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, Perth, WA, Australia, Vol. 4, pp. 1942-1948, 1995.
[17] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182–197, 2002.
[18] M. R. Sierra, C. A. Coello Coello, Multi-Objective particle swarm optimizers: A survey of the state-of-the-art, Computational Intelligence Research, Vol. 2, No. 3, pp. 287–308, 2006.
[19] S. S. Rao, Engineering Optimization, Theory and Practice, 4th Edition, pp. 380–491, John Wiley & Sons, 2009.
[20] A. D. Waite, Sonar for Practicing Engineers, 3rd Edition, pp. 125-159, John Wiley & sons, LTD, 2002.
[21] E. de Barros, J. Dantas, A. M. Pascoal, E. de Sa, Investigation of normal force and moment coefficients for an AUV at nonlinear angle of attack and sideslip range, IEEE (Oceanic Engineering), Vol. 33, No. 4, pp. 538–549, 2008.
[22] E. de Barros, A. M. Pascoal, E. de Sa, Investigation of a method for predicting AUV erivatives, Ocean Engineering, Vol. 35, No. 16, pp. 1627– 1636, 2008.