مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی اثر بهینه سازی ساختاری در قابلیت جذب انرژی تیرهای ساندویچی با هسته مشبک فلزی تحت بارگذاری خمش سه نقطه

نویسندگان
1 دانشجوی دکترا
2 دانشگاه سمنان
چکیده
در این پژوهش تاثیر بهینهسازی ساختاری هسته های مشبک در تیرهای ساندویچی به عنوان جاذب انرژی با نرمافزار اباکوس ، مورد مطالعه قرار گرفته است. ارتباط بین نیرو و جابهجایی در مرکز تیر با استفاده از نتایج آزمایشگاهی بدست آمده است. دو نوع هسته مشبک از جنس فولاد با سه جهت گیری متفاوت در سلولهای هسته، تحت بارگذاری ضربه ای سرعت پایین به صورت خمش سه نقطه، مورد بررسی قرار گرفته است. هسته تیر ساندویچی از صفحات فلزی گسترش یافته ساخته شده که برای بهینهسازی ساختاری و حذف سلول های ناکارآمد از روش ریزسازه های ایزوتروپیک جامد با تابع جریمه (SIMP) استفاده شده است. در ادامه با انجام بهینهسازی ساختاری، به بررسی پارامترهای ضربه پذیری، از جمله جذب انرژی ویژه، بعنوان اهداف آزمایش پرداخته شده است. این نوع سیستم جاذب انرژی، میتواند در صنایع هوایی، کشتی سازی، خودروسازی، صنایع ریلی و آسانسورها جهت جذب انرژی ضربه مورد استفاده قرار گیرد. نتایج تحلیل آزمایشگاهی و بررسی عددی در بارگذاری خمشی نشان داد، که به کارگیری روش بهینهسازی ساختاری، میتواند ظرفیت جذب انرژی را به صورت قابل ملاحظه ای افزایش دهد. نتایج آزمایشهای خمشی نشان داد که ظرفیت جذب انرژی ویژه در تیر ساندویچی با ساختاربهینه، بین 45 تا 94%افزایش یافته است. همچنین، جهتگیری مناسب هسته مشبک در تیر ساندویچی با ساختاری بهینه موجب افزایش جذب انرژی ویژه تا بیش از 90% میشود. در انتها ساختارهای هندسی بهینه برای سه درصد مختلف کاهش حجمی، و بهترین نمونه ها از لحاظ معیارهای در نظر گرفته شده با توجه به اهداف طراحی، معرفی میشوند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Topology Optimization Study in Energy Absorption of Lattice-core Sandwich Beams under Three-point Bending Test

نویسندگان English

hossein taghipoor 1
mohammad damghani noori 2
1 PhD student
2 Associated of Mechanical Engineering of Semnan University
چکیده English

In this research, an influence of topology optimization in energy absorption of lattice core sandwich beams by using ABAQUS software was an investigation. Relationships between the force and displacement at the midspan of the sandwich beams were obtained from the experiments. Two types of Steel lattice cores with three cell orientation were subjected to the low-velocity impact test under three-point bending. The core of sandwich beams was made from expanded metal sheets and a topology optimization with Solid Isotropic Microstructure with Penalization (SIMP) method was used to remove the redundant expanded metal cell. In the following, by studying the topology optimization to evaluate the impact parameters, including Specific Energy Absorption (SEA), as discussed testing purposes. The energy absorbing system can be used in the aerospace industry, shipbuilding, automotive, railway industry and elevators to absorb impact energy. Experimental and numerical results showed that topology optimization could significantly increase specific absorbed energy. Results of three-point bending crushing tests showed that the SEA of a sandwich beam with optimal core structure increased between 45% and 94% compared to the initial design structure of the core. In addition, appropriate orientation of expanded metal cell in the core of sandwich beam caused to increase the specific energy absorption by more than 90%. Finally, an appropriate optimal geometric structure with three tape of volume fraction and the best examples of criteria considered with respect to the objectives were introduced.

کلیدواژه‌ها English

Topology optimization
energy absorption
expanded metal sheet
sandwich beam
transverse bending
[1] S. Guruprasad, A. Mukherjee, Layered sacricial claddings under blast loading Part I analytical studies, International Journal of Impact Engineering, Vol. 24, No. 9, pp. 975–984, 2000.
[2] S. Guruprasad, A. Mukherjee, Layered sacrificial claddings under blast loading. Part II experimental studies, International Journal of Impact Engineering, Vol. 24, No. 9, pp. 975–984, 2000.
[3] E. A. Wadley HNG, Fleck NA, Fabrication and structural performance of periodic cellular metal sandwich structures, Composites Science and Technology, Vol. 63, No. 1, pp. 2331–43, 2003.
[4] F. N. Deshpande VS, Collapse of truss core sandwich beams in 3-point bending, International Journal of Solids and Structures, Vol. 38, No. 1, pp. 6275–305, 2001.
[5] G. L. Simone, Aluminum foams produced by liquid- state processes, Acta Materialia, Vol. 46, No. 3, pp. 3109–23, 1998.
[6] S. I. Frostig Y, Baruch M, Vilnay O, High-Order theory for sandwich-beam behavior with transversely flexible core, Journal of Engineering Mechanics, Vol. 118, No. 1, pp. 1026–43, 1992.
[7] F. Taheri-Behrooz, M. Mansourinik, Experimental and numerical analysis of sandwich composite beam under four-point bending, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 241–252, 2017. (in Persianفارسی )
[8] K. T. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic plates, International Journal of Solids and Structures, Vol. 17, No. 3, pp. 305–323, 1981.
[9] R. V Kohn, G. Strang, Optimal design and relaxation of variational problems, I, Communications on Pure and Applied Mathematics, Vol. 39, No. 1, pp. 113–137, 1986.
[10] K. A. Lurie, A. V Cherkaev, A. V Fedorov, Regularization of optimal design problems for bars and plates, part 2, Journal of Optimization Theory and Applications, Vol. 37, No. 4, pp. 523–543, 1982.
[11] G. I. N. Rozvany, T. G. Ong, W. T. Szeto, R. Sandler, N. Olhoff, M. P. Bendsøe, Least-weight design of perforated elastic plates—I, International Journal of Solids and Structures, Vol. 23, No. 4, pp. 521–536, 1987.
[12] T. G. Ong, G. I. N. Rozvany, W.-T. Szeto, Least-weight design of perforated elastic plates for given compliance: Nonzero Poisson’s ratio, Computer Methods in Applied Mechanics and Engineering, Vol. 66, No. 3, pp. 301–322, 1988.
[13] X. Huang, Y. M. Xie, G. Lu, Topology optimization of energy absorbing structures, International Journal of Crashworthiness, Vol. 12, No. 6, pp. 663–675, 2007.
[14] A. Ghoddosian, M. Sheykhi, M. Rostami, Contact shape optimization of structures under multiple loading using bi-directional evolutionary structures, Modeling in Engineering, Vol. 10, No. 30, pp. 76–86, 2013. (in Persianفارسی )
[15] W. Zhang, W. Zhong, X. Guo, An explicit length scale control approach in SIMP-based topology optimization, Computer Methods in Applied Mechanics and Engineering, Vol. 282, No. 1, pp. 71–86, 2014.
[16] L. Siva Rama Krishna, N. Mahesh, N. Sateesh, Topology optimization using solid isotropic material with penalization technique for additive manufacturing, Materials Today: Proceedings, Vol. 4, No. 2, pp. 1414–1422, 2017.
[17] J. Liu, Y. Ma, A survey of manufacturing oriented topology optimization methods, Advances in Engineering Software, Vol. 100, No. 1, pp. 161–175, 2016.
[18] N. Chen, D. Yu, B. Xia, J. Liu, Z. Ma, Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters, International Journal of Solids and Structures, Vol. 106–107, No. Supplement C, pp. 174–182, 2017.
[19] M. Zhou, G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Computer Methods in Applied Mechanics and Engineering, Vol. 89, No. 1–3, pp. 309–336, 1991.
[20] H. Long, Y. Hu, X. Jin, H. Yu, H. Zhu, An optimization procedure for spot-welded structures based on SIMP method, Computational Materials Science, Vol. 117, No. 1, pp. 602–607, 2016.
[21] N. P. Garcia-Lopez, M. Sanchez-Silva, A. L. Medaglia, A. Chateauneuf, A hybrid topology optimization methodology combining simulated annealing and SIMP, Computers and Structures, Vol. 89, No. 15, pp. 1512–1522, 2011.
[22] M. Abdi, Evolutionary topology optimization of continuum structures using X-FEM and isovalues of structural performance. PhD thesis, University of Nottingham, 2015.
[23] R. T. Haftka, H. M. Adelman, Recent developments in structural sensitivity analysis, Structural optimization, Vol. 1, No. 3, pp. 137–151, 1989.
[24] ASTM Int., Standard Specification for Steel , Sheet , Carbon , and High-Strength , Low-Alloy , Hot-rolled and Cold-rolled, ASTM, no. A 568/A 568M, 2000.
[25] G. W. Kooistra, H. N. G. Wadley, Lattice truss structures from expanded metal sheet,” Materials and Design, Vol. 28, No. 2, pp. 507–514, 2007.
[26] M. Damghani Nouri, H. Hatami, A. Ghodsbin Jahromi, Experimental investigation of expanded metal tube absorber under axial, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 371–378, 2015. (in Persianفارسی )
[27] C. Graciano, G. Martínez, D. Smith, Experimental investigation on the axial collapse of expanded metal tubes, Thin-walled Structural, Vol. 47, No. 8–9, pp. 953–961, 2009.