[1] C. Poole, F. Owens Jr, Introduction to Nanotechnology, vol. 3, A, John Wiley & Sons, Inc. Pub. Hoboken, New Jersy, 2003.
[2] P. M. Ajayan, L. S. Schadler, P. V. Braun, Nanocomposite science and technology: John Wiley & Sons, 2006.
[3] P. H. C. Camargo, K. G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research, Vol. 12, No. 1, pp. 1-39, 2009.
[4] Q. Pham, Y. G. Jeong, S. C. Yoon, S. I. Hong, S. H. Hong, H. S. Kim, Carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, in Proceeding of, Trans Tech Publ, pp. 245-248.
[5] S. Goussous, W. Xu, X. Wu, K. Xia, Al–C nanocomposites consolidated by back pressure equal channel angular pressing, Composites Science and Technology, Vol. 69, No. 11, pp. 1997-2001, 2009.
[6] H. Yu, Processing routes for aluminum based nano-composites, Thesis, worcester polytechnic institute, 2010.
[7] R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review, Metals, Vol. 4, No. 1, pp. 65-83, 2014.
[8] A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect, Materials Science and Engineering: A, Vol. 531, pp. 112-118, 2012.
[9] R. M. German, Powder metallurgy science, Metal Powder Industries Federation, 105 College Rd. E, Princeton, N. J. 08540, U. S. A, 1984. 279, 1984.
[10] C. DellaCorte, H. E. Sliney, Tribological properties of PM212: a high-temperature, self-lubricating, powder metallurgy composite, National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center, pp. 1989.
[11] Z. Liu, Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores, Wear, Vol. 262, No. 5, pp. 600-606, 2007.
[12] J. R. Davis, Stainless steels: ASM international, 1994.
[13] R. Jamaati, M. R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes, Materials & Design, Vol. 31, No. 10, pp. 4816-4822, 2010.
[14] C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites, Progress in Materials Science, Vol. 58, No. 4, pp. 383-502, 2013.
[15] D. Gay, Composite materials: design and applications: CRC press, 2014.
[16] X. Dangsheng, Lubrication behavior of Ni–Cr-based alloys containing MoS 2 at high temperature, Wear, Vol. 251, No. 1, pp. 1094-1099, 2001.
[17] G. Hammes, R. Schroeder, C. Binder, A. N. Klein, J. D. B. de Mello, Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites, Tribology International, Vol. 70, pp. 119-127, 2014.
[18] W. Du Frane, O. Cervantes, G. Ellsworth, J. Kuntz, Consolidation of cubic and hexagonal boron nitride composites, Diamond and Related Materials, Vol. 62, pp. 30-41, 2016.
[19] R. Haubner, M. Wilhelm, R. Weissenbacher, B. Lux, Boron nitrides—properties, synthesis and applications, in: High Performance Non-Oxide Ceramics II, Eds., pp. 1-45: Springer, 2002.
[20] Y.-L. Li, R.-X. Li, J.-X. Zhang, Enhanced mechanical properties of machinable Si 3 N 4/BN composites by spark plasma sintering, Materials Science and Engineering: A, Vol. 483, pp. 207-210, 2008.
[21] C. C. Onuoha, C. Jin, Z. N. Farhat, G. J. Kipouros, K. P. Plucknett, The effects of TiC grain size and steel binder content on the reciprocating wear behaviour of TiC-316L stainless steel cermets, Wear, Vol. 350, pp. 116-129, 2016.
[22] N. Oh, S. Lee, K. Hwang, H. Hong, Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite, Scripta Materialia, Vol. 112, pp. 123-127, 2016.
[23] S. Hu, Y. Zhao, Z. Wang, Y. Li, Q. Jiang, Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting, Materials & Design, Vol. 44, pp. 340-345, 2013.
[24] W. Chen, J. Zhou, Preparation and characterization of stainless steel/TiC nanocomposite particles by ball-milling method, Journal of Wuhan University of Technology--Materials Science Edition, Vol. 24, No. 1, pp. 38-41, 2009.
[25] م. ح. شیرانی, ع. سعیدی, م. کثیری, ا. شیرانی, اثر فعال سازی مکانیکی بر تف جوشی و خواص مکانیکی کامپوزیت Fe-50Ni-TiC, فرآیندهای نوین در مهندسی مواد, Vol. 6, No. 1, pp. 57-62, 2012.
[26] A. Genç, S. Coşkun, M. Öveçoğlu, Microstructural characterizations of Ni activated sintered W–2wt% TiC composites produced via mechanical alloying, Journal of Alloys and Compounds, Vol. 497, No. 1, pp. 80-89, 2010.
[27] J. Li, F. Li, K. Hu, Y. Zhou, TiB 2/TiC nanocomposite powder fabricated via high energy ball milling, Journal of the European Ceramic Society, Vol. 21, No. 16, pp. 2829-2833, 2001.
[28] W. Chen, Y. Gao, C. Chen, J. Xing, Tribological characteristics of Si 3 N 4–hBN ceramic materials sliding against stainless steel without lubrication, Wear, Vol. 269, No. 3, pp. 241-248, 2010.
[29] L. Gao, X. Jin, J. Li, Y. Li, J. Sun, BN/Si 3 N 4 nanocomposite with high strength and good machinability, Materials Science and Engineering: A, Vol. 415, No. 1, pp. 145-148, 2006.
[30] D. Wei, Q. Meng, D. Jia, Mechanical and tribological properties of hot-pressed h-BN/Si 3 N 4 ceramic composites, Ceramics international, Vol. 32, No. 5, pp. 549-554, 2006.
[31] D. R. Petrak, J. D. Lee, Silicon nitride/boron nitride composite with enhanced fracture toughness, Google Patents, 1994.
[32] R. Sachan, J.-W. Park, Formation of nanodispersoids in Fe–Cr–Al/30% TiB 2 composite system during mechanical alloying, Journal of Alloys and Compounds, Vol. 485, No. 1, pp. 724-729, 2009.
[33] I.-J. Shon, S.-L. Du, I.-Y. Ko, T.-W. Kim, J.-M. Doh, J.-K. Yoon, S.-W. Park, Mechanical synthesis and rapid consolidation of a nanocrystalline 5.33 Fe 0.37 Cr 0.16 Al 0.4 Si 0.07–Al 2 O 3 composite by high-frequency induction heating, Ceramics International, Vol. 37, No. 4, pp. 1353-1357, 2011.
[34] I. Manivannan, S. Ranganathan, S. Gopalakannan, S. Suresh, K. Nagakarthigan, R. Jubendradass, Tribological and surface behavior of Silicon carbide reinforced aluminum matrix nanocomposite, Surfaces and Interfaces, 2017.
[35] K. Ramkumar, S. Sivasankaran, A. S. Alaboodi, Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing, Journal of Alloys and Compounds, Vol. 709, pp. 129-141, 2017.
[36] S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, N. Sombatsompop, Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites, Materials & Design, Vol. 46, pp. 588-597, 2013.