[1] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, Vol. 296, No. 5573, pp. 1673-1676, 2002.
[2] I. Ward Small, P. Singhal, T. S. Wilson, D. J. Maitland, Biomedical applications of thermally activated shape memory polymers, Journal of materials chemistry, Vol. 20, No. 17, pp. 3356-3366, 2010.
[3] A. Lendlein, S. Kelch, Shape‐memory polymers, Angewandte Chemie International Edition, Vol. 41, No. 12, pp. 2034-2057, 2002.
[4] G. Monkman, Advances in shape memory polymer actuation, Mechatronics, Vol. 10, No. 4, pp. 489-498, 2000.
[5] T. Xie, Recent advances in polymer shape memory, Polymer, Vol. 52, No. 22, pp. 4985-5000, 2011.
[6] F. Pilate, A. Toncheva, P. Dubois, J.-M. Raquez, Shape-memory polymers for multiple applications in the materials world, European Polymer Journal, Vol. 80, pp. 268-294, 2016.
[7] F. El Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications, Advanced Engineering Materials, Vol. 4, No. 3, pp. 91-104, 2002.
[8] F. Mohamed, C. F. van der Walle, Engineering biodegradable polyester particles with specific drug targeting and drug release properties, Journal of pharmaceutical sciences, Vol. 97, No. 1, pp. 71-87, 2008.
[9] W. Yin, L. Liu, Y. Liu, J. Leng, Structural Design of Morphing Honeycomb Cell with Multi-constrains, Structural Dynamics and Materials Conference, Denver, Colorado, April, pp. 1980, 2011.
[10] Y.-C. Chen, D. C. Lagoudas, A constitutive theory for shape memory polymers. Part I: large deformations, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1752-1765, 2008.
[11] K. Hasanpour, S. Ziaei-Rad, M. Mahzoon, A large deformation framework for compressible viscoelastic materials: Constitutive equations and finite element implementation, International Journal of Plasticity, Vol. 25, No. 6, pp. 1154-1176, 2009.
[12] H. Tobushi, T. Hashimoto, S. Hayashi, E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series, Journal of intelligent material systems and structures, Vol. 8, No. 8, pp. 711-718, 1997.
[13] H. Tobushi, N. Ito, K. Takata, S. Hayashi, Thermomechanical constitutive modeling of polyurethane-series shape memory polymer, Material Science, Vol. 327, pp. 343-346, 2000.
[14] H. Tobushi, S. Hayashi, K. Hoshio, Y. Ejiri, Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer, Science and Technology of Advanced Materials, Vol. 9, No. 1, pp. 015009, 2008.
[15] Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling, International Journal of Plasticity, Vol. 22, No. 2, pp. 279-313, 2006.
[16] M. Baghani, R. Naghdabadi, J. Arghavani, A large deformation framework for shape memory polymers: Constitutive modeling and finite element implementation, Journal of intelligent Material systems and structures, Vol. 24, No. 1, pp. 21-32, 2013.
[17] M. Baghani, R. Naghdabadi, J. Arghavani, S. Sohrabpour, A thermodynamically-consistent 3D constitutive model for shape memory polymers, International Journal of Plasticity, Vol. 35, pp. 13-30, 2012.
[18] M. Baghani, R. Naghdabadi, J. Arghavani, S. Sohrabpour, A constitutive model for shape memory polymers with application to torsion of prismatic bars, Journal of Intelligent Material Systems and Structures, Vol. 23, No. 2, pp. 107-116, 2012.
[19] H. Park, P. Harrison, Z. Guo, M.-G. Lee, W.-R. Yu, Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains, Mechanics of Materials, Vol. 93, pp. 43-62, 2016.
[20] M. Baghani, H. Mohammadi, R. Naghdabadi, An analytical solution for shape-memory-polymer Euler–Bernoulli beams under bending, International Journal of Mechanical Sciences, Vol. 84, pp. 84-90, 2014.
[21] P. Ghosh, J. Reddy, A. Srinivasa, Development and implementation of a beam theory model for shape memory polymers, International Journal of Solids and Structures, Vol. 50, No. 3, pp. 595-608, 2013.
[22] T. Takeda, Y. Shindo, F. Narita, Flexural stiffness variations of woven carbon fiber composite/shape memory polymer hybrid layered beams, Journal of Composite Materials, Vol. 49, No. 2, pp. 209-216, 2015.
[23] M. Baghani, A. Taheri, An analytic investigation on behavior of smart devices consisting of reinforced shape memory polymer beams, Journal of Intelligent Material Systems and Structures, Vol. 26, No. 11, pp. 1385-1394, 2015.
[24] M. Baghani, R. Dolatabadi, M. Baniassadi, Developing a finite element beam theory for nanocomposite shape-memory polymers with application to sustained release of drugs, Scientia Iranica. Transaction B, Mechanical Engineering, Vol. 24, No. 1, pp. 249, 2017.
[25] A. H. Eskandari, M. Baghani, M. Baniassadi, A finite element analysis for shape memory polymer Timoshenko beams, Modares Mechanical Engineering, Vol. 17, No. 8, pp. 351-359, 2017. (in Persian فارسی)
[26] T. Von Kármán, Festigkeitsprobleme im maschinenbau, pp. 348-351: Teubner, 1910.
[27] A. Lendlein, V. P. Shastri, Stimuli‐Sensitive Polymers, Advanced materials, Vol. 22, No. 31, pp. 3344-3347, 2010.
[28] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics: OUP Oxford, 2014.