[1] A. A Griffith, The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, Vol. 221, pp. 163-198, 1921.
[2] G. R. Irwin, Onset of fast crack propagation in high strength steel and aluminum alloys, Naval research lab Washington DC, 1956.
[3] V. L. Ginzburg, L. D. Landau, On the theory of superconductivity, Zh. eksp. teor. Fiz, Vol. 20, pp. 1064-1082, 1950.
[4] B. Bourdin, G. A. Francfort, J. J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, Vol. 48, No. 4, pp. 797-826, 2000.
[5] J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, Vol. 46, No. 1, pp. 131-150, 1999.
[6] N. Moës, A. Gravouil, T. Belytschko, Non‐planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model, International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, pp. 2549-2568, 2002.
[7] G. L. Peng, Y. H. Wang, A Node Split Method for Crack Growth Problem, Applied Mechanics and Materials, Vol. 182, pp. 1524-1528, 2012.
[8] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 45, pp. 2765-2778, 2010.
[9] M. A. Msekh, J. M. Sargado, M. Jamshidian, P. M. Areias, T. Rabczuk, Abaqus implementation of phase-field model for brittle fracture, Computational Materials Science, Vol. 96, pp. 472-484, 2015.
[10] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. Hughes, C. M. Landis, A phase field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, Vol. 217, pp. 77-95, 2012.
[11] C. Miehe, L. M. Schänzel, Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure, Journal of the Mechanics and Physics of Solids, Vol. 65, pp. 93-113, 2014.
[12] S. May, J. Vignollet, R. De Borst, A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-convergence and stress oscillations, European Journal of Mechanics-A/Solids, Vol. 52, pp. 72-84, 2015.
[13] M. A. Msekh, M. Silani, M. Jamshidian, P. Areias, X. Zhuang, G. Zi, P. He, T. Rabczuk, Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model, Composites Part B: Engineering, Vol. 93, pp. 97-114, 2016.
[14] H. Badnava, M. A. Msekh, E. Etemadi, and T. Rabczuk, An h-adaptive thermo-mechanical phase field model for fracture, Finite Elements in Analysis and Design, Vol. 138, pp. 31-47, 2018.
[15] V. Bousson, F. Peyrin, C. Bergot, M. Hausard, A. Sautet, J. D. Laredo, Cortical Bone in the Human Femoral Neck: Three‐Dimensional Appearance and Porosity Using Synchrotron Radiation, Journal of Bone and Mineral Research, Vol. 19, No. 5, pp. 794-801, 2004.
[16] T. L. Norman, D. Vashishth, D. Burr, Fracture toughness of human bone under tension, Journal of biomechanics, Vol. 28, No. 3, pp. 309313-311320, 1995.
[17] P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, S. A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, Journal of biomechanics, Vol. 32, No. 10, pp. 1005-1012, 1999.