مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی جریان سیال درون کانال با استفاده از روش بدون شبکه محلی پترو گالرگین بر پایه تابع شعاعی

نویسندگان
1 دانشیار، مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود
2 دانشگاه صنعتی شاهرود
3 گروه مهندسی عمران ، دانشکده فنی مهندسی فردوس، دانشگاه بیرجند، بیرجند
چکیده
در این مطالعه در ابتدا به بیان و معرفی کامل روش بدون شبکه محلی پترو-گلرکین بر پایه تابع شعاعی پرداخته می‌شود. در این راستا با استخراج معادلات جریان سیال در کانال شیبدار با جریان یکنواخت سعی شده است با استفاده از مبانی ریاضی روش بدون شبکه، معادله‌ی لاپلاس جریان رابطه‏سازی شود. عدم نیاز به هیچگونه شبکه ی پیش ضمینه، تطابق مناسب با شرایط مرزی و دقت بالا از ویژگی های این روش می باشد. در ادامه به منظور صحت سنجی، یک مثال عددی که دارای پاسخ تحلیلی می باشد، به کمک این روش حل و با پاسخ های دقیق مقایسه گردیده است. نتایج نشان می‏دهد روش باقی ‌مانده وزنی به عنوان یک روش‌ کارآمد و دقیق برای دست‏یابی به پاسخ‌های تقریبی معادله‌های‌ دیفرانسیل در روش‌های بدون شبکه‌بندی مورد توجه قرار می‌گیرد. در نهایت در مساله ی جریان در کانال، با استفاده از تابع شکل شعاعی که در محیط متلب پیاده شده است، مقدار سرعت بین گره ها در کانال شیب‌دار با جریان یکنواخت تقریب زده می‌شود. مثالی عددی با استفاده از این روش مورد بررسی قرار گرفته، با نتایج حاصل از روش ایزوژئومتریک و روش تحلیلی مقایسه شده و به تعیین کانتورهای سرعت پرداخته شده است. نتایج در سطح مطلوب با نتایج ناشی از حل تحلیل منطبق است. نتایج حاصل نشان-دهنده‌ی دقت بالای روش بدون شبکه محلی پترو-گلرکین بر پایه تابع شعاعی در مدلسازی مساله جریان آب داخل کانال شیب‌دار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fluid flow modeling in channel using meshless local Petrov-Galerkin (MLPG) method by Radial Basis Function

نویسندگان English

Ramin Amini 1
mohammad akbarmakoui 2
Seyed Mojtaba Mosavi Nezhad 3
1 Department of Civil Engineering, Shahrood University of technology, Shahrood, Iran.
2 Shahrood university of technology
3 Technical Faculty of Ferdows, University of Birjand, Birjand, Iran.
چکیده English

In this study first the meshless local Petrov-Galerkin (MLPG) method by Radial Basis Function (RBF) has been explained entirely. In this way the governing channel flow expression that is based on the Laplace equation is expanded. In MLPG method, the problem domain is represented by a set of arbitrarily distributed nodes and Quadrature radial basis function is used for field function approximation and local integration is used to calculate the integrals. In the following, MLPG method is verified by exact solution in a numerical example. The Results show that MLPG method presented high accuracy and capability for solving the governing equation of the problem. Finally the velocity field is approximated in middle of nodes by RBF (MatLab code was adopted) in the uniform flow in a sloped channel problem. The MLPG results are compared with the isogeometric analysis (IA) method in the tutorial numerical example of Fluid flow modeling in channel, the velocity contours is detected, and their accuracy is demonstrated by means of several examples. The results showed good conformity compared to available analytical solution. The obtain results explain that Application of meshless method in Fluid flow modeling in channel show the applicability and efficiency of the meshless local Petrov-Galerkin method by Radial Basis Function method.

کلیدواژه‌ها English

Sloped Channel
Meshless Local Petrov-Galerkin (MLPG) Methods
Fluid flow modeling
Radial Basis Function
[1]‌ R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices of the royal astronomical society, Vol. 181, No. 3, pp. 375-389, 1977.
[2] S. Farzin, Y. Hassanzadeh, M.T. Aalami, R. Fatehi, An implicit incompressible SPH method for free surface flow problems, Modares Mechanical Engineering, Vol. 14, No. 4, pp. 99-110, 2014 (In Persianفارسی)
[3] Farzin, Y. Hassanzadeh, M.T. Aalami, R. Fatehi, Development of Two Incompressible SPH methods to simulate sediment-laden free surface flows, Modares Mechanical Engineering, Vol. 14, No. 12, pp. 91-103, 2014 (In Persianفارسی)
[4] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Computational mechanics, Vol. 10, No. 5, pp.307-318, 1992.
[5] T. Belytschko, Y.Y. Lu, L. Gu, Element‐free Galerkin methods, International journal for numerical methods in engineering, Vol. 37, No. 2, pp.229-256, 1994.
[6] W. K. Liu, S. Jun, Y. F. Zhang, Reproducing kernel particle methods. International journal for numerical methods in fluids, Vol. 20, No. 8‐9, pp.1081-1106, 1995.
[7] J. M.Melenk, I. Babuska, Approximation with harmonic and generalized harmonic polynomials in the partition of unity method, Computer Assisted Mechanics and Engineering Sciences, Vol. 4, pp.607-632, 1997.
[8] N. Sukumar, The natural element method in solid mechanics, Doctoral dissertation, Northwestern University. 1998
[9] H. Wendland, Meshless Galerkin methods using radial basis functions. Mathematics of Computation of the American Mathematical Society, Vol. 68, No. 228, pp.1521-1531, 1999.
[10] S. N. Atluri, H. G. Kim, J. Y. Cho, A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Computational mechanics. Vol. 24. No.5, pp.348-372, 1999.
[11] S. M. Moussavinezhad, F. Shahabian, and S. M. Hosseini. Two-dimensional elastic wave propagation analysis in finite length FG thick hollow cylinders with 2D nonlinear grading patterns using MLPG method, CMES Comput. Model. Eng. Sci., Vol. 91, No.1, pp. 177-204, 2013.
[12] S. M. Moussavinezhad, F. Shahabian, S. M. Hosseini, Two-dimensional stress-wave propagation in finite-length FG cylinders with two-directional nonlinear grading patterns using the MLPG method. Journal of Engineering Mechanics. Vol. 140, No. 3, pp. 575-592, 2013.
[13] A. Mohtashami, A. Akbarpour, M. Mollazadeh, Modeling of groundwater flow in unconfined aquifer in steady state with meshless local Petrov-Galerkin, Modares Mechanical Engineering, Vol. 17, No. 2, pp. 393-403, 2017 (in Persianفارسی)
[14] F. Sabetghadam, A. Shajari Ghasemkheili, Using the Method of Inverse Problems in Implementing the Solid Immersed Boundaries on Vorticity-Streamfunction Formulation of the Incompressible Viscous Fluid Flow, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 397-404, 2017 (in Persianفارسی)
[15] N.Binesh, H.Bonakdari, Introducing One-Dimensional Model to Estimate Velocity Distribution in Narrow Open-Channels, Modares civil Engineering Journal, Vol.16, No. 5, 2016 (in Persianفارسی)
[16] M.M. Shahmardan, M. Norouzi, A. Naghikhani, Numerical simulation of non-Newtonian fluid flows through a channel with a cavity, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 35-40, 2014 (In Persianفارسی)
[17] R. Amini, R. Maghsoodi, N. Z. Moghaddam, S. M. Tavakoli, Using isogeometric method for dam break modeling by Lagrangian approach, Journal of Solid and Fluid Mechanics, Vol. 4, No. 3, pp. 44-55, 2014 (in Persianفارسی)
[18] R. Amini, R. Maghsoodi, N. Z. Moghaddam, S. M. Tavakoli, Channels flow modeling using isogeometric analysis, Journal of Solid and Fluid Mechanics, Vol. 5, No. 4, pp. 15-26, 2015 (in Persianفارسی)
[19] R. Amini, R. Maghsoodi, N. Z. Moghaddam, Simulating free surface problem using isogeometric analysis, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 38, No. 2, pp. 413-421, 2016
[20] G. R. Liu, Y. T. Gu, A point interpolation method for two dimensional solids, International Journal for Numerical Methods in Engineering, Vol. 50, NO. 4, pp. 937-951, 2001.
[21] G. R. Liu, Y. T. Gu, A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, Journal of Sound and Vibration, Vol. 246, NO. 1, pp. 29-46, 2001.
[22] R. L. Hardy, Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968-1988, Computers & Mathematics with Applications, Vol. 19, NO. 8-9, pp. 163-208, 1990.
[23] E. Onate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, A finit point method in computational mechanics application to convective transport and fluid flow, International Journal for Numerical Methods in Engineering, Vol. 39, NO. 22, PP. 3839-3866, 1996.
[24] G. R. Liu, Y. T. Gu, "An introduction to meshfree method and their programing", Springer, 2005.