مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

سیستم بازیافت حرارت اتلافی خودروهای سنگین بر مبنای سیکل رانکین ارگانیک

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی سیستم‌های انرژی، دانشکده مهندسی مکانیک، دانشگاه خواجه نصیر طوسی، تهران، ایران
2 گروه انرژی و محیط زیست، پژوهشگاه نیرو، تهران
چکیده
با وجود پیشرفت‌های اخیر در بهبود کارآیی موتورهای دیزل، بیش از نیمی از انرژی ورودی سوخت به‌صورت حرارت اتلافی از اگزوز، سرمایش موتور یا از طریق تشعشع از سطوح داغ موتور، به محیط منتقل می‌شود. از طرفی موتورهای احتراق داخلی یکی از اصلی‌ترین منابع آلایندگی هوا به شمار می‌روند که موجب بروز مشکلات عمده‌ای از قبیل تخریب لایه ازون، گرم‌شدن زمین و به‌خطرافتادن سلامت موجودات زنده شده است. بازیافت حرارت اتلافی موتورهای احتراق داخلی، راهکاری برای افزایش راندمان این موتورها و کاهش آلایندگی محیطی ارایه می‌دهد. یک روش نسبتاً کم‌هزینه و ساده به‌منظور بازیافت حرارت اتلافی موتورهای احتراق داخلی، استفاده از سیکل رانکین به‌‌منظور تولید توان مکانیکی برای تبدیل به توان الکتریکی و ذخیره در باتری برای کاربردهای برقی خودرو است. در این مقاله امکان استفاده از سیستم بازیافت حرارتی اگزوز اتوبوس بدون استفاده از حرارت سایر منابع بازیافتی، با استفاده از سیکل رانکین ارگانیک، به‌منظور افزایش راندمان موتور دیزل اتوبوس مورد بررسی قرار گرفته است. براساس میزان حرارت قابل استحصال از اگزوز اتوبوس در چند حالت کاری موتور دیزل، میزان دبی سیال عامل و توان خروجی سیکل رانکین محاسبه شده است. نتایج محاسبات، افزایش ۵/۱کیلوواتی توان موتور دیزل معادل با رشد ۱/۱۲درصدی راندمان موتور، در شرایط بار جزئی موتور را نشان می‌دهد. توان مکانیکی تولیدی توسط میکروژنراتور به توان الکتریکی تبدیل می‌شود و در باتری به‌منظور استفاده در تجهیزات برقی خودرو از قبیل فن‌ها و لامپ‌ها و همچنین شارژ گوشی سرنشینان، ذخیره می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Waste Heat Recovery Rankine Cycle Based System for Heavy Duty Trucks

نویسندگان English

R. Rastgar 1
M. Amidpour 1
M. Shariati Niasar 2
1 Energy System Engineering Department, Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2 Energy & Environment Department, Niroo Research Institute, Tehran, Iran
چکیده English

Despite recent improvement in energy efficiency of diesel engines, more than 50% of the energy input is lost as waste heat in the form of hot exhaust gases, cooling water, and heat lost from hot equipment surfaces. Exhaust pollution from internal combustion engines can potentially result in severe damages on earth atmosphere, including ozone depletion, global warming, and significant health problems. Waste heat recovery based on Rankine cycle has been identified as a potential solution to increase the energy efficiency and consequently to reduce the engine emissions. In this rather low cost technology, waste heat is recovered in a Rankine cycle, aiming to convert mechanical power into electrical power. Output electrical energy is stored in a battery and can be used in electric usages. In this paper, the possibility of using the exhaust heat recovery system without utilizing the heat of other recyclable materials has been investigated, using the organic Rankine cycle (ORC), in order to increase the efficiency of the diesel engine of the bus. Depending on amount of achievable heat of exhaust, in some performance point of diesel engine, the amount of fluid flow rate and output power of Rankine cycle was calculated. Our results exhibit 5.1 KW increase in the diesel engine power resulting in 1.12% increase in energy efficiency in engine part load condition. The output mechanical power from the micro-generator is converted to electrical power and is stored in an energy storage system. The storage energy can be utilized to supply power for electrical equipment such as fans, bulbs, and also phone chargers of passengers.

کلیدواژه‌ها English

Waste Heat Recovery
Organic Rankine Cycle
Diesel engine
Performance analysis
Horst TA, Rottengruber HS, Seifert M, Ringler J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Applied Energy. 2013;105:293-303. [Link] [DOI:10.1016/j.apenergy.2012.12.060]
Yang F, Zhang H, Bei C, Song S, Wang E. Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin and tube evaporator. Energy. 2015;91:128-141. [Link] [DOI:10.1016/j.energy.2015.08.034]
Zhang HG, Wang EH, Fan BY. A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine. Applied Energy. 2013;102:1504-1513. [Link] [DOI:10.1016/j.apenergy.2012.09.018]
Grelet V, Reiche T, Lemort V, Nadri M, Dufour P. Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks. Applied Energy. 2016;165:878-892. [Link] [DOI:10.1016/j.apenergy.2015.11.004]
Agudelo AF, García-Contreras R, Agudelo JR, Armas O. Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Applied Energy. 2016;174:201-212. [Link] [DOI:10.1016/j.apenergy.2016.04.092]
Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy. 2011;36(5):3406-3418. [Link] [DOI:10.1016/j.energy.2011.03.041]
Li J, Li P, Pei G, Zeb Alvi J, Ji J. Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander. Applied Energy. 2016;165:627-638. [Link] [DOI:10.1016/j.apenergy.2015.12.087]
Braimakis K, Preißinger M, Brüggemann D, Karellas S, Panopoulos K. Low grade waste heat recovery with subcritical and Supercritical organic Rankine cycle based on natural refrigerants and their binary mixtures. Energy. 2015;88:80-92. [Link] [DOI:10.1016/j.energy.2015.03.092]
Larsen U, Pierobon L, Haglind F, Gabrielii C. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy. 2013;55:803-812. [Link] [DOI:10.1016/j.energy.2013.03.021]
Le VL, Feidt M, Kheiri A, Pelloux-Prayer S. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy. 2014;67:513-526. [Link] [DOI:10.1016/j.energy.2013.12.027]
Freeman J, Hellgardt K, Markides CN. Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK. Applied Energy. 2017;186 Pt 3:291-303. [Link] [DOI:10.1016/j.apenergy.2016.04.041]
Shu G, Li X, Tian H, Liang X, Wei H, Wang X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Applied Energy. 2014;119:204-217. [Link] [DOI:10.1016/j.apenergy.2013.12.056]
Di Battista D, Mauriello M, Cipollone R. Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle. Applied Energy. 2015;152:109-120. [Link] [DOI:10.1016/j.apenergy.2015.04.088]
Song J, Song Y, Gu Cw. Thermodynamic analysis and performance optimization of an organic Rankine cycle (ORC) waste heat recovery system for marine diesel engines. Energy. 2015;82:976-985. [Link] [DOI:10.1016/j.energy.2015.01.108]
Kim YM, Shin DG, Kim CG, Cho GB. Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources. Energy. 2016;96:482-494. [Link] [DOI:10.1016/j.energy.2015.12.092]
Freymann R, Strobl W, Obieglo A. The turbosteamer: A system introducing the principle of cogeneration in automotive applications. MTZ worldwide. 2008;69(5):20-27. [Link] [DOI:10.1007/BF03226909]
Wang EH, Zhang HG, Zhao Y, Fan BY, Wu YT, Mu QH. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine. Energy. 2012;43(1):385-395. [Link] [DOI:10.1016/j.energy.2012.04.006]
Yang K, Zhang H, Wang Z, Zhang J, Yang F, Wang E, et al. Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions. Energy. 2013;58:494-510. [Link] [DOI:10.1016/j.energy.2013.04.074]
Shu G, Liu L, Tian H, Wei H, Liang Y. Analysis of regenerative dual-loop organic Rankine cycles (DORCs) used in engine waste heat recovery. Energy Conversion and Management. 2013;76(12):234-243. [Link] [DOI:10.1016/j.enconman.2013.07.036]
Wang E, Yu Z, Yang F. A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines. Applied Energy. 2017;190:574-590. [Link] [DOI:10.1016/j.apenergy.2016.12.122]
Tian H, Liu L, Shu G, Wei H, Liang X. Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle. Energy Conversion and Management. 2014;86:764-773. [Link] [DOI:10.1016/j.enconman.2014.05.081]
Shu G, Liu L, Tian H, Wei H, Xu X. Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Conversion and Management. 2013;74:35-43. [Link] [DOI:10.1016/j.enconman.2013.04.037]
Maraver D, Royo J, Lemort V, Quoilin S. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Applied Energy. 2014;117:11-29. [Link] [DOI:10.1016/j.apenergy.2013.11.076]
Glover S, Douglas R, De Rosa M, Zhang X, Glover L. Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery. Energy. 2015;93 Pt 2:1568-1580. [Link] [DOI:10.1016/j.energy.2015.10.004]
Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy. 2018;231:138-166. [Link] [DOI:10.1016/j.apenergy.2018.09.022]
Mahmoudi A, Fazli M, Morad MR. A recent review of waste heat recovery by Organic Rankine Cycle. Applied Thermal Engineering. 2018;143:660-675. [Link] [DOI:10.1016/j.applthermaleng.2018.07.136]
Peris B, Navarro-Esbrí J, Molés F, Mota-Babiloni A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy. 2015;85:534-542. [Link] [DOI:10.1016/j.energy.2015.03.065]
Koppauer H, Kemmetmüller W, Kugi A. Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines. Applied Energy. 2017;206:329-345. [Link] [DOI:10.1016/j.apenergy.2017.08.151]
Ziviani D, Beyene A, Venturini M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Applied Energy. 2014;121:79-95. [Link] [DOI:10.1016/j.apenergy.2014.01.074]
Yang F, Dong X, Zhang H, Wang Z, Yang K, Zhang J, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions. Energy Conversion and Management. 2014;80:243-255. [Link] [DOI:10.1016/j.enconman.2014.01.036]
Reid RC. The Properties of Gases and Liquids. 4th Edition. Prausnitz JM, Poling BE, contributors. New York: McGraw-Hill; 1987. [Link]
American Society of Heating. 2009 ASHRAE handbook: Fundamentals (SI edition). Owen MS, editor. Atlanta: ASHRAE; 2009. pp. 24-30. [Link]