مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و تحلیل مکانیزم با لولاهای انعطاف‌پذیر برای اندازه‌گیری دقیق نیرو و گشتاور بالانس تونل باد

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه دینامیک، کنترل و ارتعاشات، دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، ایران
چکیده
در تونل‌های باد، برای اندازه‌گیری ۶ مولفه نیرو و گشتاور وارد بر مدل هواپیما از وسیله‌ای به نام بالانس اندازه‌گیری استفاده می‌شود. مجموعه بالانس اندازه‌گیری، شامل ۲ بخش اصلی سازه بالانس و تجهیزات الکترونیکی است. در این تحقیق، برای دستیابی به پیکر‌بندی مطلوب سازه بالانس، یک مکانیزم‌ با لولاهای انعطاف‌پذیر طراحی شده است. در روند طراحی ساختار هندسی این مکانیزم، چیدمانی ۶ ستون لودسل- لولای انعطاف‌پذیر به‌صورت هدفمند انجام شده است. از مزایای این لولای انعطاف‌پذیر نسبت به لولاهای متداول، عدم وجود لقی و اصطکاک، کم‌حجم بودن، فشردگی و رفتار خطی آن است. در مکانیزم بالانس، اثر تقابلی مولفه‌های نیرو و گشتاور بر ۶ ستون لودسل- لولا، خطای کوپلینگ ایجاد می‌کند. هر چقدر خطای کوپلینگ بزرگتر باشد، خطای اندازه‌گیری مقادیر نیرو و گشتاور نیز افزایش می‌یابد. یکی از منابع اصلی این نوع خطا مربوط به سازه مکانیزم بالانس بوده و علت آن ناکافی بودن نسبت انعطاف‌پذیری محوری به جانبی ستون‌های یاد شده است. هدف این تحقیق، طراحی بهینه مکانیزم انعطاف‌پذیر به‌منظور دستیابی به حداقل خطای کوپلینگ سازه‌ای است. به همین منظور ابتدا قیدهای طراحی لولای انعطاف‌پذیر و روابط تحلیلی حاکم بر مکانیزم انعطاف‌پذیر استخراج شده و سپس با تشکیل ماتریس خطای کوپلینگ سازه‌ای، طراحی بهینه مکانیزم بالانس انجام شده است. برای اعتبارسنجی روابط تحلیلی و بررسی صحت نتایج، مساله با تحلیل المان محدود نیز مقایسه شده است. با ساخت مکانیزم بالانس و اندازه‌گیری مقادیر نیرو و گشتاور، نتایج نشان می‌دهد که با کاهش سهم خطاهای کوپلینگ سازه‌ای لولاها، خطاهای اندازه‌گیری مقادیر ۶ مولفه نیرو و گشتاور بالانس کاهش یافته‌اند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and Analysis of a Flexural Hinges Mechanism for Force and Moment Precision Measurement in Wind Tunnel Balance

نویسندگان English

A. Mokhtari
ُُS. Yousefi
M. Mosayebi
Dynamic, Control & Vibration Department, Mechanical Engineering Faculty, Malek Ashtar University of Technology, ShahinShahr, Iran
چکیده English

In the wind tunnels, the balance measurement instrument is used to measure six components of force and moment on an airplane model. The balance of measurement consists of two parts of the balance structure and electronic equipment. In this research, a mechanism with flexible hinges is designed to achieve the desired configuration of the balance structure. In the process of designing the geometric structure of this mechanism, an effective arrangement has been implemented for the six load cell - flexure columns. The advantages of flexible hinges in comparison to conventional hinges are the absence of friction, compactness and its linear behavior. The reaction effects of the components of force and moment on each six load cell - flexure columns created the coupling errors. One of the main sources of this kind of error is related to the structure of the balance mechanism. The reason for this type of error is the inadequacy of the axial flexibility to the lateral flexibility of the columns. The aim of this research is to optimize the design of the flexible mechanism in order to achieve the minimum coupling error of the structure. For this purpose, hinge design considerations and analytical equations of the flexible mechanism have been extracted. The design of the balance mechanism is optimized by creating a structure coupling error matrix. To validate the analytic equations and results, the problem is compared with the finite element analysis. The results indicated that the measurement errors decrease in the measurement of six components of force and moment of balance.

کلیدواژه‌ها English

Flexible Hinge
Load Cell
balance
Force
Moment
Boutemedjet A, Samardžić M, Ćurčić D, Rajić Z, Ocokoljić G. Wind tunnel measurement of small values of rolling moment using six component strain gauge balance. Measurement. 2018;116:438-450. [Link] [DOI:10.1016/j.measurement.2017.11.043]
Yong YK, Lu TF. Comparison of circular flexure hinge design equations and the derivation of empirical stiffness formulations. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 14-17 July 2009, Singapore, Singapore. Piscataway: IEEE; 2009. [Link] [DOI:10.1109/AIM.2009.5229961]
Li T, Du Y, Jiang Y, Zhang J. Empirical compliance equations for constant rectangular cross section flexure hinges and their applications. Mathematical Problems in Engineering. 2016;2016:5602142. [Link] [DOI:10.1155/2016/5602142]
Lobontiu N, Paine JSN, O'Malley E, Samuelson M. Parabolic and hyperbolic flexure hinges: Flexibility, motion precision and stress characterization based on compliance closed-form equations. Pricision Engineering. 2002;26(2):183-192. [Link] [DOI:10.1016/S0141-6359(01)00108-8]
Tian Y, Shirinzadeh B, Zhang D, Zhong Y. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis. Precision Engineering. 2010;34(1):92-100. [Link] [DOI:10.1016/j.precisioneng.2009.03.004]
Tian Y, Shirinzadehb B, Zhang D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design. Precision Engineering. 2010;34(3):408-418. [Link] [DOI:10.1016/j.precisioneng.2009.10.002]
Zelenika S, Munteanu MGh, Bona FD. Optimized flexural hinge shapes for microsystems and high-precision applications. Mechanism and Machine Theory. 2009;44(10):1826-1839. [Link] [DOI:10.1016/j.mechmachtheory.2009.03.007]
Yong YK, Lu TF. The effect of the accuracies of flexure hinge equations on the output compliances of planar micro-motion stages. Mechanism and Machine Theory. 2008;43(3):347-363. [Link] [DOI:10.1016/j.mechmachtheory.2007.03.007]
Wu Y, Zhou Z. Design calculations for flexure hinges. Review of Scientific Instruments. 2002;73(8):3101. [Link] [DOI:10.1063/1.1494855]
Chapra S, Canale R. Numerical methods for engineers. 6th Edition. New York: McGraw-Hill; 2009. [Link]