مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل دینامیکی و طراحی یک الگوریتم کنترلی دینامیک مبنا برای راه‌رفتن ربات 4پا

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران
چکیده
در این مقاله، طراحی یک الگوریتم کنترلری دینامیک مبنا برای تولید فرآیند گام‌برداری پایدار در یک ربات ۴پای ۶لینکی ارائه شده است. تاکنون مطالعات زیادی در زمینه کنترل و حرکت ربات‌های ۴پا انجام گرفته است ولی اکثر کارهای انجام‌شده بر مبنای مدل‌سازی دقیق ربات و محیط آن صورت گرفته است. چنین روش‌هایی به علت تطبیقی نبودنشان توانایی خود را با تغییر محیط از دست می‌دهند. این در حالی است که ویژگی اصلی حرکت مهره‌داران، تطبیقی‌بودن حرکات آنها است. لذا استخراج یک الگوریتم کنترلی که صرفاً بر مبنای دینامیک ربات باشد حائز اهمیت است. الگوریتم‌های کنترلی که بتوانند تضمین پایداری کنند به ۲ نوع کلی دینامیک مبنا و تراژکتوری مبنا تقسیم می‌شوند. در این بین الگوریتم‌های تراژکتوری مبنا نیاز به داشتن اطلاعات دقیقی از گیت دارند که لزوماً در دسترس نیست. اما الگوریتم‌های دینامیک مبنا از یک سری قیود حرکتی برای رسیدن به یک کنترلر پایدارساز استفاده می‌کنند که این قیود خود گیت حرکتی مناسب را ایجاد می‌نمایند. در این پژوهش با استفاده از الگوریتم کنترلی دینامیک مبنا، یک کنترلر برای پایدارسازی و تولید گیت ترات و پیس در یک مسیر مستقیم و مسطح برای حرکت یک ربات ۴پا ارائه شده است. با توجه به اینکه ربات ۴پای مورد نظر دارای ۴ درجه آزادی است لذا از ۳ قید هندسی برای تأمین حرکت ریتمیک استفاده شده است. در این مقاله پایداری فرآیند گام‌برداری ربات ۴پا، با استفاده از نگاشت بازگشتی پوانکاره اثبات شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic modeling and Designing a dynamic based control algorithm for legged quadruped robot locomotion

نویسندگان English

H. Abdi
M.J. Shaker Arani
H. Salarieh
M.M. Kakaei
Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده English

In this study, a dynamic based control algorithm for a six-link quadruped locomotion is proposed. Up to now, a lot of robotic scientists have researched in quadruped locomotion but most of their researches are based on modeling of robot and its surrounding. Such methods are not able to generate a stable locomotion when the surrounding changes a little. So this is important to propose a dynamic based control algorithm. The algorithms that can guarantee the stability are classified to two categories of dynamic based and trajectory based methods. The trajectory based algorithms need detailed information of gait and surrounding which is not necessarily available. But the dynamic based algorithms use some geometric constraints to reach a stable controller. These geometric constraints generate the proper gaits. So in this study by employing the dynamic based control algorithm, we proposed a controller for generating the Trot and Pace gait on a straight and flat path for quadruped robot locomotion. Given that the quadruped robot has four degrees of freedom so three geometric constraints are needed to provide a rhythmic locomotion. In this study we showed that for step generating by quadruped robot, both the appropriate initial conditions for angular velocities and presence of a point mass on the neck of the robot are needed. Also in this study the stability of quadruped locomotion has been proved using Poincaré return map.


کلیدواژه‌ها English

Quadruped robot
Dynamic based algorithm
Trot
Pace
Dynamic modeling by Lagrange method
Meng X, Wang S, Cao Z, ZhangL. A review of quadruped robots and environment perception. 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27-29 July 2016. Piscataway: IEEE; 2016. [Link] [DOI:10.1109/ChiCC.2016.7554355]
Gor M, Pathak PM, Kumar Samantaray A, Yang JM. Dynamic modeling and simulation of compliant legged quadruped robot. Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013. Unknown City: Unknown Publisher; 2013. [Link]
Li M, Jiang Z, Wang P, Sun L, Ge SS. Control of a quadruped robot with bionic springy legs in trotting gait. Journal of Bionic Engineering. 2014;11(2):188-198. [Link] [DOI:10.1016/S1672-6529(14)60043-3]
Zhang G, Rong X, Hui C, Li Y, Li B. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control. Advanced Robotics. 2016;30(4):284-297. [Link] [DOI:10.1080/01691864.2015.1113889]
Meng J, Li Y, Li B. A dynamic balancing approach for a quadruped robot supported by diagonal legs. International Journal of Advanced Robotic Systems. 2015;12(10). [Link] [DOI:10.5772/61542]
Ames AD, Tabuada P, Jones A, Ma WL, Rungger M, Schürmann B, et al. First steps toward formal controller synthesis for bipedal robots with experimental implementation. Nonlinear Analysis: Hybrid Systems. 2017;25:155-173. [Link] [DOI:10.1016/j.nahs.2017.01.002]
Djoudi D, Chevallereau C, Aoustin Y. Optimal reference motions for walking of a biped robot. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005. Piscataway: IEEE; 2005. [Link]
Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B. Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC PRESS; 2007. [Link]
Grizzle JW, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control. 2001;46(1):51-64. [Link] [DOI:10.1109/9.898695]
Grizzle JW, Chevallereau C, Sinnet RW, Ames AD. Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica. 2014;50(8):1955-1988. [Link] [DOI:10.1016/j.automatica.2014.04.021]
Akbari Hamed K, Grizzle JW. Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion. Nonlinear Analysis: Hybrid Systems. 2017;25:227-245. [Link] [DOI:10.1016/j.nahs.2016.08.006]
Yazdani M, Salarieh H, Saadat Foumani M. A Bio-inspired Distributed Hierarchical Control Framework for Walking of a 3-Link Biped Robot. Modares Mechanical Engineering. 2018;18(2):392-400. [Persian] [Link]
kakaei MM, Salarieh H. A Novel robust control method for three-link underactuated planar biped robot. Modares Mechanical Engineering. 2017;17(11):47-58. [Persian] [Link]
Plestan F, Grizzle JW, Westervelt ER, Abba G. Stable walking of a 7-DOF biped robot. IEEE Transactions on Robotics and Automation. 2003;19(4):653-668. [Link] [DOI:10.1109/TRA.2003.814514]
Sadeghian H, Ott C, Garofalo G, Cheng G. Passivity-based control of underactuated biped robots within hybrid zero dynamics approach. 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017, Singapore. Piscataway: IEEE; 2017. [Link] [DOI:10.1109/ICRA.2017.7989471]
Yang J, Ning J, Liu C. Locomotion control of seven-link robot with CPG-ZMP. 2016 35th Chinese Control Conference (CCC), 27-29 July 2016, Chengdu, China. Piscataway: IEEE; 2016. [Link] [DOI:10.1109/ChiCC.2016.7554055]
Yazdani M, Salarieh H, Saadat Foumani M. Decentralized control of rhythmic activities in fully-actuated/under-actuated robots. Robotics and Autonomous Systems. 2018;101:20-33. [Link] [DOI:10.1016/j.robot.2017.12.003]
Fukuda T, Hasegawa Y, Sekiyama K, Aoyama T. Multi-locomotion robotic systems: New concepts of bio-inspired robotics. Berlin: Springer; 2012. [Link] [DOI:10.1007/978-3-642-30135-3]
Morris B, Grizzle JW. A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. Proceedings of the 44th IEEE Conference on Decision and Control, 15-15 Dec. 2005, Seville, Spain. Piscataway: IEEE; 2005. [Link]
Yosofvand M, Beigzadeh B, Davaei Markazi AH. Analysis of stable period-one gait of a planner passive biped with elastic links. Modares Mechanical Engineering. 2016;16(6):312-320. [Link]