مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل دینامیکی و ارتعاشی تیر تیموشینکو کامپوزیتی با لایههای پیزوالکتریک

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران
2 گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
تیرها از هندسه­های اساسی در مهندسی هستند و بسیاری از مسائل مهندسی به صورت تیر ساده­سازی می­شود. در این مقاله تحلیل دینامیکی و ارتعاشاتی تیر تیموشینکو ساخته­شده از لایه­های گرافیت اپوکسی به همراه دو لایه­ پیزوالکتریک در دو طرف آن پرداخته شده است. استخراج معادلات حرکت بر پایه تئوری مرتبه اول برشی تیرها و استفاده از اصل همیلتون انجام شده است. معادلات حرکت که به­صورت مشتق­های جزئی به دست می‌آیند، ابتدا به معادلات معمولی کوپل مرتبه اول تبدیل و سپس به روش رانگ کوتای مرتبه­ چهارم حل شده­اند. در نهایت تاثیر پارامترهای پیزوالکتریک در پاسخ ارتعاشاتی و دینامیکی تیر بررسی شده است. نتایج نشان می­دهند که با افزایش طول تیر فرکانس طبیعی آن کاهش پیدا می‌کند. در میان پارامترهای پیزو‌الکتریک پارامتر C۱۱ تاثیر کمتری نسبت به ضریب موثر عرضی e۳۱ در پاسخ فرکانسی دارد. هرچه نسبت طول به ضخامت تیر کمتر باشد تاثیر C۱۱ روی فرکانس طبیعی بیشتر خواهد بود. تاثیر سایر پارامترهای پیزو الکتریک نیز نسبت به این دو پارامتر در پاسخ فرکانسی ناچیز ارزیابی شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic and Vibration Analysis of Composite Timoshenko Beam with Piezoelectric Layers

نویسندگان English

A.A. Kharestani 1
S.A. Mousavi 1
M. Kaffash Mirzarahimi 2
S. Mahjoub Moghadas 1
1 Mechanical Department, Engineering Faculty, Imam Hossein University, Tehran, Iran
2 Mechanical Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده English

Beams are the basic geometries in engineering and many engineering issues are simplified as a beam problem. In this paper, the dynamics and vibration analysis of composite Timoshenko beam made of epoxy graphite layers with two piezoelectric layers on both sides have been investigated. Extraction of motion equations has been conducted based on the first-order shear deformation beam theory using the Hamilton principle. The partial differential equations were converted to the first-order coupled differential equations and then they were solved by fourth-order Runge–Kutta method. The effect of piezoelectric parameters on the vibrational and dynamic response of the beam has been investigated. The results show that the natural frequency of the beam decreases with increasing the length of the neam. Among piezoelectric parameters, the parameter of C11 has a lower effect than the effective transverse coefficient of e31 in the frequency response. As the ratio of the length of the beam is lower than the thickness, the effect of C11 will be greater on the natural frequency. The effect of the other piezoelectric parameters in the frequency response has also been evaluated very small relative to these two parameters.

کلیدواژه‌ها English

Vibratiions
Timoshenko Beam
Piezoelectric
Runge–Kutta
1- Kiang CH, Endo M, Ajayan PM, Dresselhaus G, Dresslhaus MS. Size effects in carbon nanotubes. Phys Rev Lett. 1998;81(9):1869-1872. [Link] [DOI:10.1103/PhysRevLett.81.1869]
Abbaszadeh Bidokhti A, Sadough Vanini A, Eslami MR. Active control of piezo-fgm beams [Internet]. Dijon, France: MATERIAUX. 13-17 November; 2006 [cited 2018 July 06]. Available from: https://bit.ly/311zrhG [Link]
Kargarnovin MH, Najafzadeh MM, Viliani NS. Vibration control of functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge. Smart Mater Struct. 2007;16(4):1252-1259. [Link] [DOI:10.1088/0964-1726/16/4/037]
Li SR, Su HD, Cheng CJ. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Appl Math Mech. 2009;30(8):969-982. [Link] [DOI:10.1007/s10483-009-0803-7]
Simsek M, Kocatürk T. Free and forced vibration of functionally graded beam subjected to a concentrated moving harmonic load. Compos Struct. 2009;90(4):465-473. [Link] [DOI:10.1016/j.compstruct.2009.04.024]
Simsek M. Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos Struct. 2010;92(10):2532-2546. [Link] [DOI:10.1016/j.compstruct.2010.02.008]
Khalili SMR, Jafari AA, Eftekhari SA. A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos Struct. 2010;92(10):2497-2511. [Link] [DOI:10.1016/j.compstruct.2010.02.012]
Jafari AA, Fathabadi M. Forced vibration of FGM Timoshenko beam with piezoelectric layers carrying moving load. Aerospace Mech J. 2013;9(2):69-77. [Persian] [Link]
Shahraeeni M, Shakeri R, Hasheminejad SM. An analytical solution for free and forced vibration of a piezoelectric laminated plate coupled with an acoustic enclosure. Comput Math Appl. 2015;69(11):1329-1341. [Link] [DOI:10.1016/j.camwa.2015.03.022]
Hou H, He G. Static and dynamic analysis of two-layer Timoshenko composite beams by weak-form quadrature element method. Appl Math Model. 2018;55:466-483. [Link] [DOI:10.1016/j.apm.2017.11.007]
Hosseini SAH, Rahmani O. Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construct Res. 2018;2(2):1-17. [Link] [DOI:10.18063/scr.v2i2.401]
Kadoli R, Akhtar K, Ganesan N. Static analysis of functionally graded beams using higher order shear deformation theory. Appl Math Model. 2008;32(12):2509-2525. [Link] [DOI:10.1016/j.apm.2007.09.015]
Sina SA, Navazi HM, Haddadpour H. An analytical method for free vibration analysis of functionally graded beams. Mater Des. 2009;30(3):741-747. [Link] [DOI:10.1016/j.matdes.2008.05.015]
Leissa AW, Qatu MS. Vibrations of continuous systems. New York: MacGraw Hill; 2011. [Link]
Tiersten HF. Linear Piezoelectric Plate Vibration. New York:Plenum press; 1969. [Link] [DOI:10.1007/978-1-4899-6453-3]
Qatu MS. Vibration of laminated shells and plates. 1ST Edition. New York: Academic Press; 2004. [Link] [DOI:10.1016/B978-008044271-6/50006-5]
Majkut L. Free and forced vibrations of Timoshenko beams described by single difference equation. J Theor Appl Mech. 2009;47(1):193-210. [Link]
Aydogdu M. Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int J Mech Sci. 2005;47(11):1740-1755. [Link] [DOI:10.1016/j.ijmecsci.2005.06.010]
Gdoutos EE, Marioli-Riga ZP, editors. Recent advances in composite materials. In Honor of SA Paipetis. Dordrecht: Springer Science & Business Media; 2013. [Link]