مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

فرود بهینه پرنده بدون سرنشین به روش بسط مرتبه بالای برداری

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه دینامیک پرواز و کنترل، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
چکیده
در این پژوهش، روشی نوآورانه برای محاسبه متغیرهای حساسیت مرتبه بالا و طراحی فرامین هدایت بر مبنای آن، به منظور فرود بهینه یک پرنده بدون سرنشین ارائه شده است. این روش که اصطلاحاً بسط مرتبه بالای برداری نامیده می‌شود، بر اساس توسعه روش بسط مرتبه بالا و پیاده‌سازی آن بر اساس محاسبات ماتریس-مبنا شکل گرفته است. با ترکیب بسط مرتبه بالای برداری با تئوری کنترل بهینه، در این تحقیق روشی برای طراحی و استخراج فرامین شتاب به منظور مانور فرود ارائه شده است. با بهره‌مندی از روش پیشنهادی، متغیرهای حساسیت برای مسئله مورد نظر تا مرتبه ۶ام استخراج شده و سپس با اندازه‌گیری میزان انحراف متغیرهای حالت از مقدار اولیه، فرمان شتاب و مسیر مرجع در شبیه‌سازی‌ها به‌روز می‌گردند. به منظور ارزیابی عملکرد، ۳ سناریوی متفاوت با اغتشاشات اولیه متنوع در نظر گرفته شده و نتایج شبیه‌سازی قانون هدایت پیشنهادی به طور کامل ارائه شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimal Landing of Unmanned Aerial Vehicle Using Vectorised High Order Expansions Method

نویسندگان English

M. Moghadasian
J. Roshanian
Department of Flight Dynamics & Control, Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده English

In this research, an innovative approach has been proposed to the calculation of high order sensitivities and designing its guidance commands for an unmanned aerial vehicle landing strategy design. This method, which is called vectorised high order method, has been developed based on high order expansions method and its implementation using matrix-based mathematical calculations. In this research, a method is presented to design and extract the acceleration commands for landing maneuvers, by combining the vectorised high order expansions method and optimal control theory. Accordingly, the sensitivity variables for the given problem are calculated up to the 6th term and then the reference trajectory and acceleration command in the simulations are updated based on the initial deviations. In order to performance evaluation of the proposed method, 3 landing scenarios with the different initial deviations have been considered and the results of simulation of the proposed guidance law have been presented.

کلیدواژه‌ها English

High Order Expansions
Optimal Control
Optimal Maneuver
Unmanned Aerial Vehicle
1- Liao SJ. An approximate solution technique not dependent on small parameters: A special example. International Journal of Non Linear Mechanics. 1995;30(3):371-380. [Link] [DOI:10.1016/0020-7462(94)00054-E]
Liao Sh. Comparison between the homotopy analysis method and homotopy perturbation method. Applied Mathematics and Computation. 2005;169(2):1186-1194. [Link] [DOI:10.1016/j.amc.2004.10.058]
Motsa SS, Sibanda P, Shateyi S. A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Communications in Nonlinear Science and Numerical Simulation. 2010;15(9):2293-2302. [Link] [DOI:10.1016/j.cnsns.2009.09.019]
Poorjamshidian M, Mahjoob Moghadas S, Mottalebi AA, Sheikhi J. Forced vibration analysis of a nonlinear marine riser using homotopy analysis method. Journal of Marine Engineering. 2014;10(19):67-74. [Persian] [Link]
Zamani E, Nazif HR. A novel semi analytical solution for the dynamic and heat transfer analysis of stagnation point flow using BK-HAM method. Modares Mechanical Engineering. 2017;17(3):270-280. [Persian] [Link]
Di Lizia P, Armellin R, Lavagna M. Application of high order expansions of two-point boundary value problems to astrodynamics. Celestial Mechanics and Dynamical Astronomy. 2008;102(4):355-375. [Link] [DOI:10.1007/s10569-008-9170-5]
Armellin R, Di Lizia P, Topputo F, Lavagna M, Bernelli-Zazzera F, Berz M. Gravity assist space pruning based on differential algebra. Celestial Mechanics and Dynamical Astronomy. 2010;106:1. [Link] [DOI:10.1007/s10569-009-9235-0]
Di Lizia P, Armellin R, Bernelli-Zazzera F, Berz M. High order optimal control of space trajectories with uncertain boundary conditions. Acta Astronautica. 2014;93:217-229. [Link] [DOI:10.1016/j.actaastro.2013.07.007]
Di Lizia P, Armellin R, Morselli A, Bernelli-Zazzera F. High order optimal feedback control of space trajectories with bounded control. Acta Astronautica. 2014;94(1):383-394. [Link] [DOI:10.1016/j.actaastro.2013.02.011]
Morselli A, Armellin R, De Lizia P, Bernelli-Zazzera F. A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation. Advances in Space Research. 2015;55(1):311-333. [Link] [DOI:10.1016/j.asr.2014.09.003]
Witting A, Colombo C, Armellin R. Long-term density evolution through semi-analytical and differential algebra techniques. Celestial Mechanics and Dynamical Astronomy. 2017;128(4):435-452. [Link] [DOI:10.1007/s10569-017-9756-x]
Moghadasian M, Roshanian J. Continuous maneuver of unmanned aerial vehicle using high order expansions method for optimal control problem. Modares Mechanical Engineering. 2018;17(12):382-390. [Persian] [Link]
Moghadasian M, Roshanian J. Semi-feedback optimal control design for nonlinear problems. Optimal Control Applications and Methods. 2018;39(2):549-562. [Link] [DOI:10.1002/oca.2358]
Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft. 1979;16(4):287-288. [Link] [DOI:10.2514/3.58520]
Moghadasian M, Roshanian J. Approximately optimal manoeuvre strategy for aero-assisted space mission. Advances in Space Research. 2019;64(2):436-450. [Link] [DOI:10.1016/j.asr.2019.04.003]
Mason JC, Handscomb DC. Chebyshev Polynomials. 1st Edition. New York: CRC Press; 2002. pp. 237-267. [Link] [DOI:10.1201/9781420036114]