مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌های ضرایب تقویت‌کننده ماتریس برای بررسی شکست مواد ارتوتروپ

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران
چکیده
در این مقاله تئوری جدیدی برای بررسی رفتار شکست مواد کامپوزیتی ترک­­دار ارائه شده است. طبق تئوری حاکم ترک داخل ماتریس ایزوتروپ ایجاد شده و رشد می­کند. بنابراین بر خلاف تئوری­های حاکم بر شکست این مواد که بستر رشد ترک را در ماده­ی همگن غیرایزوتروپ فرض می­کرد در این تئوری بستر رشد ترک ماده ایزوتروپ در نظر گرفته شده که در اثر قرار گرفتن در ساختار ماده کامپوزیتی تحت تأثیر الیاف رفتار آن تغییر کرده است. در این دیدگاه، الیاف در ساختار یک ماده ارتوتروپ به عنوان تقویت‌کننده­های بستر ایزوتروپ ماتریس در نظر گرفته می­شوند که اثرات آنها به صورت ضرایبی در میدان تنش ایزوتروپ تعریف می­شوند. این ضرایب که ضرایب استحکام بخش نامیده شده­اند به سه روش مختلف برای ترکی که در هر راستای دلخواهی نسبت به الیاف در یک صفحه قرار گرفته­اند مطالعه و بررسی شده­اند. کمّی‌سازی اثرات استحکام‌بخشی الیاف با تعریف ضرایب استحکام بخش در مودهای کششی در راستای الیاف و عمود بر آن و مود برشی صورت می­پذیرد. ضرایب استحکام‌بخش حاصل از سه روش مطالعه شده به خواص الاستیک ماده، مسیر رشد ترک و نیز زاویه­ای که ترک دلخواه با الیاف می­سازد بستگی دارند. با این وجود در یکی از روش های ارائه شده از طریق رویکرد میکرو مکانیکی وابستگی این ضرایب به کسر حجمی الیاف نیز نشان داده شده است. مقایسه­ نتایج به دست آمده از این ضرایب و تئوری­های موجود شکست مواد ارتوتروپ بیانگر کارآیی و توانایی ضرایب استحکام بخش در بررسی و توجیه رفتار شکست این مواد است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Matrix Reinforcement Coefficients Models for Fracture Investigation of Orthotropic Materials

نویسندگان English

H. Manafi Farid
M. Fakoor
Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده English

In this paper, the new theory has been3 proposed to investigate the fracture behavior of cracked composite materials. Conforming to this theory, crack is created and distributes in the isotropic matrix. Therefore, contrary to the previous theories related to fracture mechanics of these types of material, which assumes that crack growth occurs in anisotropic homogenous material, the new theory assumes that crack growth occurs in the isotropic matrix, which is affected by fibers in the composite structure of the material. In this approach, fibers are considered as isotropic matrix reinforcements and the reinforcement effects are defined as coefficients in stress state of the isotropic matrix. The coefficients are called reinforcement factors and derived via three different approaches to study the arbitrary crack in 2D materials. Quantifying the reinforcing effects of fibers are conducted when tension across and along fibers and shear loadings exerted on the body. The three methods demonstrate that the reinforcement factors depend on elastic properties, crack growth location and the crack and fiber orientations. However, the method, derived from the micro-mechanic approach, displays their dependence on the fiber volum ratio. Comparing the results of these cofficients with the existing fracture theories illustrates the efficiency and ability of the reinforcement factors in investigation and explanation of the fracture behavior of orthotropic materials.In this paper, the new theory has been3 proposed to investigate the fracture behavior of cracked composite materials. Conforming to this theory, crack is created and distributes in the isotropic matrix. Therefore, contrary to the previous theories related to fracture mechanics of these types of material, which assumes that crack growth occurs in anisotropic homogenous material, the new theory assumes that crack growth occurs in the isotropic matrix, which is affected by fibers in the composite structure of the material. In this approach, fibers are considered as isotropic matrix reinforcements and the reinforcement effects are defined as coefficients in stress state of the isotropic matrix. The coefficients are called reinforcement factors and derived via three different approaches to study the arbitrary crack in 2D materials. Quantifying the reinforcing effects of fibers are conducted when tension across and along fibers and shear loadings exerted on the body. The three methods demonstrate that the reinforcement factors depend on elastic properties, crack growth location and the crack and fiber orientations. However, the method, derived from the micro-mechanic approach, displays their dependence on the fiber volum ratio. Comparing the results of these cofficients with the existing fracture theories illustrates the efficiency and ability of the reinforcement factors in investigation and explanation of the fracture behavior of orthotropic materials.

کلیدواژه‌ها English

Fracture mechanics
Reinforced Isotropic Solid
Reinforcement Coefficients
Fiber Volum Ratio
Orthotropic Material
Cotterell B. The past, present, and future of fracture mechanics. Engineeing Fracture Mechanics. 2002;69(5):533-553. [Link] [DOI:10.1016/S0013-7944(01)00101-1]
Wu EM. Application of fracture mechanics to anisotropic plates. Journal of Applied Mechanics. 1967;34(4):967-974. [Link] [DOI:10.1115/1.3607864]
McKinney JM. Mixed-mode fracture of unidirectional graphite/epoxy composites. Journal of Composite Materials. 1972;6(1):164-166. [Link] [DOI:10.1177/002199837200600115]
Hunt DG, Croager WP. Mode II fracture toughness of wood measured by a mixed-mode test method. Journal of Material Science Letters. 1982;1(2):77-79. [Link] [DOI:10.1007/BF00731031]
Mall S, Murphy JF, ASCE M, Shottafer JE. Criterion for mixed mode fracture in wood. Journal of Engineering Mechanics. 1983;109(3):680-690. [Link] [DOI:10.1061/(ASCE)0733-9399(1983)109:3(680)]
Reiterer A, Sinn G, Stanzl-Tschegg SE. Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Material Science and Engineering A. 2002;332(1-2):29-36. [Link] [DOI:10.1016/S0921-5093(01)01721-X]
Saouma VE, Ayari ML, Leavell DA. Mixed mode crack propagation in homogeneous anisotropic solids. Engineering Fracture Mechanics. 1987;27(2):171-184. [Link] [DOI:10.1016/0013-7944(87)90166-4]
Carloni C, Nobile L. Maximum circumferential stress criterion applied to orthotropic materials. Fatigue & amp: Fracture of Engineering Materrials and Structures. 2005;28(9):825-833. [Link] [DOI:10.1111/j.1460-2695.2005.00922.x]
Nobile L, Piva A, Viola E. On the inclined crack problem in an orthotropic medium under biaxial loading. Engineering Fracture Mechanics. 2004;71(4-6):529-546. [Link] [DOI:10.1016/S0013-7944(03)00051-1]
Gdoutos EE, Zacharopoulos DA, Meletis EI. Mixed-mode crack growth in anisotropic media. Engineering Fracture Mechanics. 1989;34(2):337-346. [Link] [DOI:10.1016/0013-7944(89)90147-1]
Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering. 1963;85(4):519-525. [Link] [DOI:10.1115/1.3656897]
Jernkvist LO. Fracture of wood under mixed model loading: I. Derivation of fracture criteria. Engineering Fracture Mechanics. 2001;68(5):549-563. [Link] [DOI:10.1016/S0013-7944(00)00127-2]
Jernkvist LO. Fracture of wood under mixed mode loading; II. Experimental investigation of Picea abies. Engineering Fracture Mechanics. 2001;68(5):565-576. [Link] [DOI:10.1016/S0013-7944(00)00128-4]
Buczek MB, Herakovich CT. A normal stress criterion for crack extension direction in orthotropic composite materials. Journal of Composite Materials. 1985;19(6):544-553. [Link] [DOI:10.1177/002199838501900606]
Zare Hosseinabadi S, Fakoor M, Rafiee R. Extension of maximum tensile stress criterion to mixed mode fracture of orthotropic materials considering T-stress. Modares Mechanical Engineering. 2017;17(10):292-300. [Persian] [Link]
Gowhari Anaraki AR, Fakoor M. General mixed mode I/II fracture criterion for wood considering T-stress effects. Material & Design. 2010;31(9):4461-4469. [Link] [DOI:10.1016/j.matdes.2010.04.055]
Gowhari Anaraki AR, Fakoor M. Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model. Materials Science and Engineering: A. 2010;527(27-28):7184-7191. [Link] [DOI:10.1016/j.msea.2010.08.004]
Gowhari Anaraki AG, Fakoor M. A new mixed-mode fracture criterion for orthotropic materials, based on strength properties. The Journal of Strain Analysis for Engineering Design. 2011;46(1):33-44. [Link] [DOI:10.1243/03093247JSA667]
Fakoor M, Khansari NM. Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Engineering Fracture Mechanics. 2016;153:407-420. [Link] [DOI:10.1016/j.engfracmech.2015.11.018]
van der Put TACM. A new fracture mechanics theory for orthotropic materials like wood. Engineering Fracture Mechanics. 2007;74(5):771-781. [Link] [DOI:10.1016/j.engfracmech.2006.06.015]
Tsai SW, Hahn HT. Introduction to Composite Materials. Lancaster, Pennsylvania: Technomic Publishing Company; 1980. p. 65-77. [Link]
Fakoor M, Rafiee R, Sheikhansari M. The influence of fiber-crack angle on the crack tip parameters in orthotropic materials. Part C: Journal of Mechanical Engineering Science. 2017;231(3):418-431. [Link] [DOI:10.1177/0954406215617195]
Williams ML. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1956;24(1):109-114. [Link]
Sih GC, Paris PC, Irwin GR. On cracks in rectilinearly anisotropic bodies. Internatinal Journal of Fracture Mechanics. 1965;1(3):189-203. [Link] [DOI:10.1007/BF00186854]
Brundstrom J. Micro and ultrastructural aspects of Norway spruce tracheids: a review. IAWA Journal. 2001;22(4):333-353. [Link] [DOI:10.1163/22941932-90000381]
Fakoor M, Rafiee R. Transition angle, a novel concept for predicting the failure mode in orthotropic materials. Part C: Journal of Mechanical Engineering Science. 2013;227(10):2157-2164. [Link] [DOI:10.1177/0954406212470905]