مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بهبود یکپارچگی سطح در میکرو کانال ایجاد شده در پلی‌دی‌متیل سیلوکسان توسط میکرو فرزکاری تخلیه الکترو‌شیمیایی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران
2 استاد، گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران
چکیده
در سال‌های اخیر ایجاد ساختارهای سه‌بعدی و کانال‌های کوچک هدایت کننده جریان سیال، بر روی مواد نارسانای جریان الکتریکی نظیر پلی‌دی‌متیل سیلوکسان (PDMSجهت کاربرد در سیستم‌های الکترومکانیکی و پزشکی بسیار مورد توجه قرار گرفته است. عموما جهت ایجاد میکروکانال در پلی‌دی‌متیل سیلوکسان از فرایند لیتوگرافی استفاده می شود که از جمله محدودیت­های این فرایند می‌توان به زمان و هزینه بالای فرایند و دیوارههای زاویهدار اشاره نمود. در تمامی مصارف، عملکرد کانال وابسته به کیفیت سطح آن است. در این پژوهش برای اولین بار فرآیند ماشین‌کاری تخلیه الکتروشیمیایی (ECDM) که با هزینه کم و نرخ براده برداری مناسب قادر به ایجاد کانال‌ بر روی مواد نارسانا است جهت ایجاد میکروکانال در پلی‌دی‌متیل سیلوکسان استفاده شده است. از سایر مزایای این روش می­توان به امکان دستیابی به عمق­های بالا اشاره کرد. بدین منظور تأثیر پارامترهایی فرایند نظیر غلظت الکترولیت، سرعت دورانی و پیشروی، اختلاف پتانسیل اعمالی بر کیفیت سطح و زبری سطح بررسی شد. ملاحظه شد که ماشین‌کاری تخلیه الکتروشیمیایی قادر است کانال­های با کیفیت سطح مشابه روش لیتوگرافی ایجاد کند. همچنین ملاحظه شد که با کاهش سرعت دورانی از 10000 دور بر دقیقه تا 0، زبری سطح 2 تا 4 برابر افزایش می­یابد این امر بدلیل افزایش ضخامت فیلم گاز و افزایش جرقه­های سرگردان از سطح ابزار و قطعه کار با کاهش سرعت دورانی رخ می­دهد. همچنین مقدار زبری سطح کانال ایجاد شده با افزایش ولتاژ از 38 به 42 ولت، به‌اندازه 36 درصد افزایش می‌یابد. غلظت الکترولیت 25% منجر به بهترین زبری سطح در تمام نمونه­ شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Improvement of surface integrity of PDMS microchannel in the micro electrochemical discharge milling process

نویسندگان English

Arsalan Torabi 1
Mohammad Reza Razfar 2
1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده English

In recent years, forming a 3D microfluidic channels on the electrical non-conductive material such as Polydimethylsiloxane (PDMS) in the micro-electromechanical system (MEMS) and medical applications is of great interest. Lithography is the most know process to create patterns on the PDMS however there are a few drawbacks to this process such as high operational cost and time, and sidewall angle. In all applications, the quality of the microchannel surface determines the performance of it. In this research as innovatively the electrochemical discharge milling (ECDM) which is known for lower operational cost and proper material removal rate (MRR) (i.e. process time), and is capable of creating patterns on electrical non-conductive material, was used to form a microchannel on the PDMS. To that end, the effect of process parameters such as electrolyte concentration, feed rate and cutting speed and voltage on the surface roughness and surface integrity deeply investigated. It was observed that ECDM is capable of creating patterns on the PDMS with surface integrity which is comparable with the lithography microchannel. It is also observed that decreasing the rotational speed from 10000 to 0 rpm results in increasing the surface roughness 2 to 4 times, this happens due to the increasing the thickness of the gas film around the tool, and subsequently increasing the flying sparks which results in higher surface roughness. Increasing the Voltage from 38 to 42 V results in 38% enhancement of surface roughness. The 25% electrolyte concentration results in lower surface roughness.

کلیدواژه‌ها English

Polydimethylsiloxane (PDMS)
Electrochemical discharge milling
Surface integrity
micro-channel
1. Volpatti, L.R. and A.K. Yetisen, Commercialization of microfluidic devices. Trends in biotechnology, 2014. 32(7): p. 347-350.
2. Sabahi, N., et al., Investigating the effect of the electrolyte concentration and type of electrolyte on the surface quality and depth of micro-channels produced by electrochemical discharge machining (ECDM). Modares Mechanical Engineering, 2016. 15(20): p. 401-405.
3. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
4. Aaraj Khodaii, S.J., et al., Optimization of Grinding partially stabilized zirconia (PSZ) for dental Implant application. Modares Mechanical Engineering, 2018. 18(7): p. 187-194.
5. Khodaii, J., et al., Surface integrity and flexural strength improvement in grinding partially stabilized zirconia. Journal of Central South University, 2019. 26(12): p. 3261-3278.
6. Ferguson, G.S., et al., Monolayers on disordered substrates: self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly (dimethylsiloxane). Macromolecules, 1993. 26(22): p. 5870-5875.
7. Faivre, M., et al., Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures. Biomicrofluidics, 2014. 8(5): p. 054103.
8. Abidin, U., J. Yunas, and B.Y. Majlis, Fabrication and testing of polydimethylsiloxane (PDMS) microchannel for lab-on-chip (LOC) magnetically-labelled biological cells separation. Jurnal Teknologi, 2016. 78(8-4).
9. Gang, M.G., et al., Wettability modification of cyclic olefin copolymer surface and microchannel using micromilling process. Journal of Manufacturing Processes, 2019. 37: p. 168-176.
10. Rogers, J.A. and R.G. Nuzzo, Recent progress in soft lithography. Materials today, 2005. 8(2): p. 50-56.
11. Zhang, Z., et al., A low-cost fabrication system for manufacturing soft-lithography microfluidic master molds. Micro and Nanosystems, 2015. 7(1): p. 4-12.
12. Kam, D.H., J. Kim, and J. Mazumder, Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon. Journal of Manufacturing Processes, 2018. 35: p. 99-106.
13. Kandlikar, S., et al., Heat transfer and fluid flow in minichannels and microchannels. 2005: elsevier.
14. Shabgard, M.R. and R. Rostami Heshmatabad, Experimental investigation of the electrolyte type effect on the specifications of electrochemical machining (ECM) of the 304 stainless steel. Modares Mechanical Engineering, 2016. 16(3): p. 43-54.
15. Jabbaripour, B. and M. Motallebpouralishahi, Experimental Investigation of Metal Removal Efficiency and Machined Surface Texture in EDM of Titanium Aluminide Compound. Modares Mechanical Engineering, 2018. 17(12): p. 47-55.
16. Hajian, M., et al., Experimental investigation of continuous voltage and pulsed voltage into electrochemical discharge machining. Modares Mechanical Engineering, 2016. 15(20): p. 393-396.
17. Mohammadi, P., et al., A study on the effect of tool travel speed and tool rotational speed on the surface quality and depth of micro-channels in electrochemical discharge machining. Modares Mechanical Engineering, 2016. 15(20): p. 406-409.
18. Elhami, S. and M. Razfar, Numerical and experimental study of discharge mechanism in the electrochemical discharge machining process. Journal of Manufacturing Processes, 2020. 50: p. 192-203.
19. Zheng, Z.-P., et al., The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 265.
20. Furutani, K. and H. Maeda, Machining a glass rod with a lathe-type electro-chemical discharge machine. Journal of Micromechanics and Microengineering, 2008. 18(6): p. 065006.
21. Wuthrich, R., et al. In situ measurement and micromachining of glass. in MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No. 99TH8478). 1999. IEEE.
22. Fascio, V., et al. 3D microstructuring of glass using electrochemical discharge machining (ECDM). in MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No. 99TH8478). 1999. IEEE.
23. Zheng, Z.-P., et al., 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. Journal of micromechanics and microengineering, 2007. 17(5): p. 960.
24. Ziki, J.D.A., T.F. Didar, and R. Wüthrich, Micro-texturing channel surfaces on glass with spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 2012. 57: p. 66-72.
25. Wüthrich, R. and L. Hof, The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications. International Journal of Machine Tools and Manufacture, 2006. 46(7-8): p. 828-835.
26. Mallick, B., et al., Experimental investigation for improvement of micro-machining performances of µ-ECDM process. Materials Today: Proceedings, 2020.
27. Mehrabi, F., et al., Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass. Journal of Materials Processing Technology, 2018. 255: p. 665-672.
28. Sabahi, N. and M.R. Razfar, Investigating the effect of mixed alkaline electrolyte (NaOH+ KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). The International Journal of Advanced Manufacturing Technology, 2018. 95(1-4): p. 643-657.
29. Arab, J., H.K. Kannojia, and P. Dixit, Effect of tool electrode roughness on the geometric characteristics of through-holes formed by ECDM. Precision Engineering, 2019. 60: p. 437-447.
30. Chak, S.K. and P.V. Rao, The drilling of Al 2 O 3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process. The International Journal of Advanced Manufacturing Technology, 2008. 39(7-8): p. 633-641.
31. Aaraj Khodaii, S.J. and A. Rahimi, Optimization of Surface roughness in stereolithography. Modares Mechanical Engineering, 2015. 15(1): p. 245-256.
32. Whitehouse, D.J., Handbook of surface and nanometrology. 2010: CRC press.
33. Wüthrich, R. and J.A. Ziki, Micromachining using electrochemical discharge phenomenon. William Andrew, Oxford, 2009.
34. Didar, T.F., A. Dolatabadi, and R. Wüthrich, Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. Journal of micromechanics and microengineering, 2008. 18(6): p. 065016.
35. Hajian, M., et al., Experimental and numerical investigations of machining depth for glass material in electrochemical discharge milling. Precision Engineering, 2018. 51: p. 521-528.