1. Volpatti, L.R. and A.K. Yetisen, Commercialization of microfluidic devices. Trends in biotechnology, 2014. 32(7): p. 347-350.
2. Sabahi, N., et al., Investigating the effect of the electrolyte concentration and type of electrolyte on the surface quality and depth of micro-channels produced by electrochemical discharge machining (ECDM). Modares Mechanical Engineering, 2016. 15(20): p. 401-405.
3. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
4. Aaraj Khodaii, S.J., et al., Optimization of Grinding partially stabilized zirconia (PSZ) for dental Implant application. Modares Mechanical Engineering, 2018. 18(7): p. 187-194.
5. Khodaii, J., et al., Surface integrity and flexural strength improvement in grinding partially stabilized zirconia. Journal of Central South University, 2019. 26(12): p. 3261-3278.
6. Ferguson, G.S., et al., Monolayers on disordered substrates: self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly (dimethylsiloxane). Macromolecules, 1993. 26(22): p. 5870-5875.
7. Faivre, M., et al., Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures. Biomicrofluidics, 2014. 8(5): p. 054103.
8. Abidin, U., J. Yunas, and B.Y. Majlis, Fabrication and testing of polydimethylsiloxane (PDMS) microchannel for lab-on-chip (LOC) magnetically-labelled biological cells separation. Jurnal Teknologi, 2016. 78(8-4).
9. Gang, M.G., et al., Wettability modification of cyclic olefin copolymer surface and microchannel using micromilling process. Journal of Manufacturing Processes, 2019. 37: p. 168-176.
10. Rogers, J.A. and R.G. Nuzzo, Recent progress in soft lithography. Materials today, 2005. 8(2): p. 50-56.
11. Zhang, Z., et al., A low-cost fabrication system for manufacturing soft-lithography microfluidic master molds. Micro and Nanosystems, 2015. 7(1): p. 4-12.
12. Kam, D.H., J. Kim, and J. Mazumder, Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon. Journal of Manufacturing Processes, 2018. 35: p. 99-106.
13. Kandlikar, S., et al., Heat transfer and fluid flow in minichannels and microchannels. 2005: elsevier.
14. Shabgard, M.R. and R. Rostami Heshmatabad, Experimental investigation of the electrolyte type effect on the specifications of electrochemical machining (ECM) of the 304 stainless steel. Modares Mechanical Engineering, 2016. 16(3): p. 43-54.
15. Jabbaripour, B. and M. Motallebpouralishahi, Experimental Investigation of Metal Removal Efficiency and Machined Surface Texture in EDM of Titanium Aluminide Compound. Modares Mechanical Engineering, 2018. 17(12): p. 47-55.
16. Hajian, M., et al., Experimental investigation of continuous voltage and pulsed voltage into electrochemical discharge machining. Modares Mechanical Engineering, 2016. 15(20): p. 393-396.
17. Mohammadi, P., et al., A study on the effect of tool travel speed and tool rotational speed on the surface quality and depth of micro-channels in electrochemical discharge machining. Modares Mechanical Engineering, 2016. 15(20): p. 406-409.
18. Elhami, S. and M. Razfar, Numerical and experimental study of discharge mechanism in the electrochemical discharge machining process. Journal of Manufacturing Processes, 2020. 50: p. 192-203.
19. Zheng, Z.-P., et al., The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 265.
20. Furutani, K. and H. Maeda, Machining a glass rod with a lathe-type electro-chemical discharge machine. Journal of Micromechanics and Microengineering, 2008. 18(6): p. 065006.
21. Wuthrich, R., et al. In situ measurement and micromachining of glass. in MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No. 99TH8478). 1999. IEEE.
22. Fascio, V., et al. 3D microstructuring of glass using electrochemical discharge machining (ECDM). in MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No. 99TH8478). 1999. IEEE.
23. Zheng, Z.-P., et al., 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. Journal of micromechanics and microengineering, 2007. 17(5): p. 960.
24. Ziki, J.D.A., T.F. Didar, and R. Wüthrich, Micro-texturing channel surfaces on glass with spark assisted chemical engraving. International Journal of Machine Tools and Manufacture, 2012. 57: p. 66-72.
25. Wüthrich, R. and L. Hof, The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications. International Journal of Machine Tools and Manufacture, 2006. 46(7-8): p. 828-835.
26. Mallick, B., et al., Experimental investigation for improvement of micro-machining performances of µ-ECDM process. Materials Today: Proceedings, 2020.
27. Mehrabi, F., et al., Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass. Journal of Materials Processing Technology, 2018. 255: p. 665-672.
28. Sabahi, N. and M.R. Razfar, Investigating the effect of mixed alkaline electrolyte (NaOH+ KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). The International Journal of Advanced Manufacturing Technology, 2018. 95(1-4): p. 643-657.
29. Arab, J., H.K. Kannojia, and P. Dixit, Effect of tool electrode roughness on the geometric characteristics of through-holes formed by ECDM. Precision Engineering, 2019. 60: p. 437-447.
30. Chak, S.K. and P.V. Rao, The drilling of Al 2 O 3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process. The International Journal of Advanced Manufacturing Technology, 2008. 39(7-8): p. 633-641.
31. Aaraj Khodaii, S.J. and A. Rahimi, Optimization of Surface roughness in stereolithography. Modares Mechanical Engineering, 2015. 15(1): p. 245-256.
32. Whitehouse, D.J., Handbook of surface and nanometrology. 2010: CRC press.
33. Wüthrich, R. and J.A. Ziki, Micromachining using electrochemical discharge phenomenon. William Andrew, Oxford, 2009.
34. Didar, T.F., A. Dolatabadi, and R. Wüthrich, Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. Journal of micromechanics and microengineering, 2008. 18(6): p. 065016.
35. Hajian, M., et al., Experimental and numerical investigations of machining depth for glass material in electrochemical discharge milling. Precision Engineering, 2018. 51: p. 521-528.