[1] Chou Y-C, Chandru V, Barash MM. A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis. J Eng Ind 1989;111:299–306. https://doi.org/10.1115/1.3188764.
[2] Lee SH, Cutkosky MR. Fixture Planning With Friction. J Eng Ind 1991;113:320–7. https://doi.org/10.1115/1.2899703.
[3] Cai W, Hu SJ, Yuan JX. Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations. J Manuf Sci Eng 1996;118:318–24. https://doi.org/10.1115/1.2831031.
[4] Marin RA, Ferreira PM. Optimal Placement of Fixture Clamps: Minimizing the Maximum Clamping Forces. J Manuf Sci Eng 2002;124:686–94. https://doi.org/10.1115/1.1469520.
[5] Hurtado JF, Melkote SN. A model for synthesis of the fixturing configuration in pin-array type flexible machining fixtures. Int J Mach Tools Manuf 2002;42:837–49. https://doi.org/10.1016/S0890-6955(02)00009-3.
[6] Kang Y, Rong Y, Yang JC. Computer-Aided Fixture Design Verification. Part 3. Stability Analysis. Int J Adv Manuf Technol 2003;21:842–9. https://doi.org/10.1007/s00170-002-1401-4.
[7] Kaya N, Ozturk F. The Application of Chip Removal and Frictional Contact Analysis for Workpiece-Fixture Layout Verification. Int J Adv Manuf Technol 2003;21:411–9. https://doi.org/10.1007/s001700300048.
[8] Halevi G, Weill RD. Principles of Process Planning. Dordrecht: Springer Netherlands; 1995. https://doi.org/10.1007/978-94-011-1250-5.
[9] Kaya N. Machining fixture locating and clamping position optimization using genetic algorithms. Comput Ind 2006;57:112–20. https://doi.org/10.1016/j.compind.2005.05.001.
[10] Satyanarayana S, Melkote S. Finite element modeling of fixture–workpiece contacts: single contact modeling and experimental verification. Int J Mach Tools Manuf 2004;44:903–13. https://doi.org/10.1016/j.ijmachtools.2004.02.010.
[11] Wang Y, Chen X, Liu Q, Gindy N. Optimisation of machining fixture layout under multi-constraints. Int J Mach Tools Manuf 2006;46:1291–300. https://doi.org/10.1016/j.ijmachtools.2005.10.014.
[12] Chen W, Ni L, Xue J. Deformation control through fixture layout design and clamping force optimization. Int J Adv Manuf Technol 2008;38:860–7. https://doi.org/10.1007/s00170-007-1153-2.
[13] Parvaz H, Nategh MJ. A pilot framework developed as a common platform integrating diverse elements of computer aided fixture design. Int J Prod Res 2013;51:6720–32. https://doi.org/10.1080/00207543.2013.832000.
[14] Jiang K, Zhou X, Li M, Kong X. A multi-objective optimization and decision algorithm for locator layout continuous searching in checking fixture design. Int J Adv Manuf Technol 2013;67:357–66. https://doi.org/10.1007/s00170-012-4489-1.
[15] Xiong L, Molfino R, Zoppi M. Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system. Int J Adv Manuf Technol 2013;66:1305–13. https://doi.org/10.1007/s00170-012-4408-5.
[16] Parvaz H, Nategh MJ. Development of locating system design module for freeform workpieces in computer-aided fixture design platform. Comput Aided Des 2018;104:1–14. https://doi.org/10.1016/j.cad.2018.04.004.
[17] Nategh MJ, Parvaz H. Development of computer aided clamping system design for workpieces with freeform surfaces. Comput Aided Des 2018;95:52–61. https://doi.org/10.1016/j.cad.2017.10.003.
[18] Parvaz H. Analytical and Numerical Investigation of Reaction Forces in Fixturing of Rigid Workpiece with Polyhedral Geometry. J Solid Fluid Mech 2020;10:17–29. https://doi.org/10.22044/JSFM.2020.8494.2925.
[19] Altintas Y. Manufacturing Automation. Cambridge: Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511843723.
[20] Budak E, Altintas¸ Y, Armarego EJA. Prediction of Milling Force Coefficients From Orthogonal Cutting Data. J Manuf Sci Eng 1996;118:216–24. https://doi.org/10.1115/1.2831014.
[21] Boyer R, Collings EW, Welsch G. Materials Properties Handbook: Titanium Alloys. ASM International; 1994.