[1] J. Bachmann, C. Hidalgo, and S. Bricout, “Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review,” Sci. China Technol. Sci., vol. 60, no. 9, pp. 1301–1317, 2017, doi: 10.1007/s11431-016-9094-y.
[2] Y. Shen, B. Jiang, and Y. Li, “Scale effect on impact performance of unidirectional glass fiber reinforced epoxy composite laminates,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081319.
[3] M. Saeedifar, M. A. Najafabadi, D. Zarouchas, H. H. Toudeshky, and M. Jalalvand, “Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission,” Compos. Part B Eng., vol. 144, pp. 206–219, 2018, doi: 10.1016/j.compositesb.2018.02.028.
[4] H. Kaczmarek and S. Maison, “Comparative ultrasonic analysis of damage in CFRP under static indentation and low-velocity impact,” Compos. Sci. Technol., vol. 51, no. 1, pp. 11–26, 1994, doi: 10.1016/0266-3538(94)90152-X.
[5] E. Abisset et al., “Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 1 - Experiments,” Compos. Struct., vol. 136, pp. 712–726, 2016, doi: 10.1016/j.compstruct.2015.09.061.
[6] H. T. H. T. Ali, S. Fotouhi, R. Akrami, F. Pashmforoushd, A. Pavlovic, and M. Fotouhi, “Effect of ply thickness on damage mechanisms of composite laminates under repeated loading,” FME Trans., vol. 48, no. 2, pp. 287–293, 2020, doi: 10.5937/fme2002287t.
[7] M. Fotouhi, M. Damghani, M. C. M. C. Leong, S. Fotouhi, M. Jalalvand, and M. R. M. R. Wisnom, “A comparative study on glass and carbon fibre reinforced laminated composites in scaled quasi-static indentation tests,” Compos. Struct., vol. 245, 2020, doi: 10.1016/j.compstruct.2020.112327.
[8] S. Wang, D. D. L. Chung, and J. H. Chung, “Effects of composite lay-up configuration and thickness on the damage self-sensing behavior of carbon fiber polymer-matrix composite,” J. Mater. Sci., vol. 40, no. 3, pp. 561–568, 2005, doi: 10.1007/s10853-005-6289-6.
[9] H. Y. Choi, H. S. Wang, and F. K. Chang, “Effect of Laminate Configuration and Impactor’s Mass on the Initial Impact Damage of Graphite/Epoxy Composite Plates Due to Line-Loading Impact,” J. Compos. Mater., vol. 26, no. 6, pp. 804–827, 1992, doi: 10.1177/002199839202600603.
[10] M. Beyaoui, H. Boussetta, A. Laksimi, L. Walha, and M. Haddar, “Experimental investigation of the damage progression in the filament-wound composite by the acoustic emission technique,” Lect. Notes Mech. Eng., no. 207169, pp. 1235–1243, 2018, doi: 10.1007/978-3-319-66697-6_121.
[11] H. Boussetta, M. Beyaoui, A. Laksimi, L. Walha, and M. Haddar, “Study of the filament wound glass/polyester composite damage behavior by acoustic emission data unsupervised learning,” Appl. Acoust., vol. 127, pp. 175–183, 2017, doi: 10.1016/j.apacoust.2017.06.004.
[12] T. Loutas, N. Eleftheroglou, and D. Zarouchas, “A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data,” Compos. Struct., vol. 161, pp. 522–529, Feb. 2017, doi: 10.1016/j.compstruct.2016.10.109.
[13] N. Fallahi, G. Nardoni, H. Heidary, R. Palazzetti, X. T. Yan, and A. Zucchelli, “Supervised and Non-supervised AE Data Classification of Nanomodified CFRP During DCB Tests,” scindeks.ceon.rs, doi: 10.5937/fmet1604415F.
[14] R. Mohammadi, M. Saeedifar, H. H. Toudeshky, M. A. Najafabadi, and M. Fotouhi, “Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach,” J. Reinf. Plast. Compos., vol. 34, no. 11, pp. 868–878, Jun. 2015, doi: 10.1177/0731684415583166.
[15] Y. Aoki, H. Suemasu, and T. Ishikawa, “Damage propagation in CFRP laminates subjected to low velocity impact and static indentation,” Adv. Compos. Mater. Off. J. Japan Soc. Compos. Mater., vol. 16, no. 1, pp. 45–61, 2007, doi: 10.1163/156855107779755318.
[16] L. S. Sutherland and C. Guedes Soares, “The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates,” Compos. Part B Eng., vol. 43, no. 3, pp. 1459–1467, 2012, doi: 10.1016/j.compositesb.2012.01.002.
[17] M. Saeedifar, M. A. Najafabadi, D. Zarouchas, H. H. Toudeshky, and M. Jalalvand, “Barely visible impact damage assessment in laminated composites using acoustic emission,” Compos. Part B Eng., vol. 152, pp. 180–192, Nov. 2018, doi: 10.1016/j.compositesb.2018.07.016.
[18] A. International, “D6264/D6264M-17: Standard Test Method for Measuring,” ASTM Int., vol. 98, no. Reapproved, pp. 1–12, 2018, [Online]. Available: www.astm.org,.
[19] “No Title,” [Online]. Available: http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/8552_us.pdf.
[20] A. A. Bakhtiary Davijani, M. Hajikhani, and M. Ahmadi, “Acoustic Emission based on sentry function to monitor the initiation of delamination in composite materials,” Mater. Des., vol. 32, no. 5, pp. 3059–3065, 2011, doi: 10.1016/j.matdes.2011.01.010.
[21] G. Minak, P. Morelli, and A. Zucchelli, “Fatigue residual strength of circular laminate graphite-epoxy composite plates damaged by transverse load,” Spec. Issue 12th Eur. Conf. Compos. Mater. ECCM 2006, vol. 69, no. 9, pp. 1358–1363, 2009, doi: 10.1016/j.compscitech.2008.05.025.
[22] K. N. Shivakumar, W. Elber, and W. Illg, “Prediction of impact force and duration due to low-velocity impact on circular composite laminates,” J. Appl. Mech. Trans. ASME, vol. 52, no. 3, pp. 674–680, 1985, doi: 10.1115/1.3169120.