[1] A. Molaei, E. Abedloo, H. D. Taghirad, and Z. Marvi, “Kinematic and workspace analysis of DIAMOND: An innovative eye surgery robot,” in 2015 23rd Iranian Conference on Electrical Engineering, 2015, pp. 882–887, doi: 10.1109/IranianCEE.2015.7146336.
[2] A. Bataleblu, R. Khorrambakht, and H. D. Taghirad, “Robust H∞-based control of ARAS-diamond: A vitrectomy eye surgery robot,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., p. 095440622097933, Dec. 2020, doi: 10.1177/0954406220979334.
[3] P. Agand, H. D. Taghirad, and A. Molaee, “Vision-based kinematic calibration of spherical robots,” in 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), 2015, pp. 395–400, doi: 10.1109/ICRoM.2015.7367817.
[4] H. Damirchi, R. Khorrambakht, and H. D. Taghirad, “ARAS-IREF: An Open-Source Low-Cost Framework for Pose Estimation,” in 2019 7th International Conference on Robotics and Mechatronics (ICRoM), 2019, doi: 10.1109/icrom48714.2019.9071852.
[5] A. Bataleblu, M. Motaharifar, E. Abedlu, and H. D. Taghirad, “Robust H∞ control of a 2RT parallel robot for eye surgery,” in 2016 4th International Conference on Robotics and Mechatronics (ICROM), 2016, pp. 136–141, doi: 10.1109/ICRoM.2016.7886835.
[6] Khalilpour Seyedi SA, Khorrambakht R, Bourbour AR, Taghirad HR. Joint-space position control of a deployable cable driven robot in joint space using force sensors and actuator encoders. Modares Mechanical Engineering. 2019 Nov 10;19(11):2615-25.
[7] S. Bai, X. Li, and J. Angeles, “A review of spherical motion generation using either spherical parallel manipulators or spherical motors,” Mech. Mach. Theory, vol. 140, pp. 377–388, 2019, doi: https://doi.org/10.1016/j.mechmachtheory.2019.06.012.
[8] E. Abedloo, A. Molaei, and H. D. Taghirad, “Closed-form dynamic formulation of spherical parallel manipulators by Gibbs-Appell method,” in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 576–581, doi: 10.1109/ICRoM.2014.6990964.
[9] Mahdizadeh O, Meymand AZ, Mollahossein M, Moosavian SA. Kinematics and dynamics modeling of spherical parallel manipulator. In2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM) 2018 Oct 23 (pp. 406-412). IEEE.
[10] A. Arian, B. Danaei, and M. T. Masouleh, “Kinematics and dynamics analysis of a 2-dof spherical parallel robot,” in 2016 4th international conference on robotics and mechatronics (ICROM), 2016, pp. 154–159, doi: 10.1109/ICRoM.2016.7886838.
[11] B. Danaei, A. Arian, M. Tale Masouleh, and A. Kalhor, “Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism,” Multibody Syst. Dyn., vol. 41, no. 4, pp. 367–390, Jun. 2017, doi: 10.1007/s11044-017-9578-3.
[12] A. Codourey and E. Burdet, “A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots,” in Proceedings of international conference on robotics and automation, 1997, vol. 2, pp. 1612–1618, doi: 10.1109/ROBOT.1997.614371.
[13] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter identification of robots,” Robot. Comput. Integr. Manuf., vol. 26, no. 5, pp. 414–419, 2010, doi: https://doi.org/10.1016/j.rcim.2010.03.013.
[14] Craig JJ, Hsu P, Sastry SS. Adaptive control of mechanical manipulators. The International Journal of Robotics Research. 1987 Jun;6(2):16-28.
[15] Slotine JJ, Li W. On the adaptive control of robot manipulators. The international journal of robotics research. 1987 Sep;6(3):49-59.
[16] G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Modelling and identification of the da Vinci Research Kit robotic arms,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, doi: 10.1109/iros.2017.8205948.
[17] Y. Wang, R. Gondokaryono, A. Munawar, and G. S. Fischer, “A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit,” {IEEE} Robot. Autom. Lett., vol. 4, no. 4, pp. 3657–3664, Oct. 2019, doi: 10.1109/lra.2019.2927947.
[18] Golluccio G, Gillini G, Marino A, Antonelli G. Robot Dynamics Identification: A
Reproducible Comparison With Experiments on the KINOVA Jaco2. IEEE Robotics &
Automation Magazine. 2020 Jul 29.
[19] C. D. Sousa and R. Cortesão, “Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach,” Int. J. Rob. Res., vol. 33, no. 6, pp. 931–944, 2014, doi: 10.1177/0278364913514870.
[20] C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based Optimization,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4147–4154, Oct. 2019, doi: 10.1109/lra.2019.2931248.
[21] L.-W. Tsai, “Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work ,” J. Mech. Des., vol. 122, no. 1, pp. 3–9, 1999, doi: 10.1115/1.533540.
[22] Taghirad HD. Parallel robots: mechanics and control. CRC press; 2013 Feb 20.
[23] Ding L, Li X, Li Q, Chao Y. Nonlinear friction and dynamical identification for a robot
manipulator with improved cuckoo search algorithm. Journal of Robotics. 2018 Jan 1;2018.
[24] J. Klodmann, D. Lakatos, C. Ott, and A. Albu-Schäffer, “A Closed-Form Approach to Determine the Base Inertial Parameters of Complex Structured Robotic Systems,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 316–321, 2015, doi: https://doi.org/10.1016/j.ifacol.2015.05.021.
[25] E. Dombre and W. Khalil, Eds., Modeling, Performance Analysis and Control of Robot Manipulators. ISTE, 2007.
[26] Y. R. Stürz, L. M. Affolter, and R. S. Smith, “Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6863–6868, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.1208.
[27] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brussel, “Optimal robot excitation and identification,” IEEE Trans. Robot. Autom., vol. 13, no. 5, pp. 730–740, 1997, doi: 10.1109/70.631234.
[28] Ljung L, Singh R. Version 8 of the MATLAB system identification toolbox. IFAC Proceedings Volumes. 2012 Jul 1;45(16):1826-31.