مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی و شناسایی دینامیک ربات ارس دیاموند: ربات جراح عمل ویترورتینال چشم

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه رباتیک ارس، دانشکده مهندسی برق، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران
چکیده
استخراج مدل دینامیکی دقیق بازوان رباتیکی به‌منظور استفاده در فرایند طراحی ربات، کنترل، کالیبراسیون و شناسایی خطا امری ضروری است. به‌منظور استخراج مدل دینامیکی دقیق از بازوان رباتیکی، نیاز است تا تمامی ترم‌های مؤثر بر دینامیک ربات مورد بررسی قرار گرفته و سپس پارامتر‌های دینامیکی ربات با سازگاری فیزیکی مناسب مورد شناسایی قرار گیرند. در این مقاله، در ابتدا سینماتیک ربات موازی کروی ارس دیاموند، که به‌منظور عمل ویترورتینال چشم‌پزشکی توسعه داده شده است، مورد مدل‌سازی قرار گرفته، سپس با ارائه فرمول‌بندی مبتنی بر اصل کار مجازی، فرم خطی از مدل دینامیکی ربات حاصل‌شده و نتایج با استفاده از نرم‌افزار سیم مکانیکس متلب مورد صحت سنجی قرار می‌گیرند. افزون بر این، سایر ترم‌های مؤثر بر دینامیک ربات بررسی و مدل‌سازی شده و با استفاده از فرم خطی دینامیک ربات و درنظرگرفتن قید‌های فیزیکی مناسب، پارامترهای دینامیکی ربات توسط روش کمترین مربعات با سازگاری فیزیکی مناسب شناسایی می‌شوند. درنهایت، با استفاده از معیار درصد سازگاری ریشه میانگین مربعات خطای نرمال شده و استفاده از مسیرهای مختلف حرکت ربات، کیفیت پارامترهای دینامیکی شناسایی‌شده مورد ارزیابی قرار می‌گیرند. نتایج صحت سنجی تجربی نشان‌دهنده تخمین هفتاد و پنج درصدی گشتاور ربات و مثبت معین شدن ماتریس جرمی ربات بوده، که استفاده از کنترلرهای مدل مبنای رایجی نظیر گشتاور محاسبه‌شده، به‌منظور کنترل دقیق حرکت ربات در عمل جراحی ویترورتینال چشم را میسر می‌سازد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Dynamic Modeling and Identification of ARAS-Diamond: A Vitreoretinal Eye Surgery Robot

نویسندگان English

Ali Hassani
Abbas Bataleblu
Seyed Ahmad Khalilpour
Hamid D. Taghirad
Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical Engineering, K.N. Toosi University of Technology
چکیده English

Deriving the accurate dynamic model of robots is pivotal for robot design, control, calibration, and fault detection. To derive an accurate dynamic model of robots, all the terms affecting the robotchr('39')s dynamics are necessary to be considered, and the dynamic parameters of the robot must be identified with appropriate physical insight. In this paper, first, the kinematics of the ARAS-Diamond spherical parallel robot, which has been developed for vitreoretinal ophthalmic surgery, are investigated, then by presenting a formulation based on the principle of virtual work, a linear form of robot dynamics is derived, and the obtained results are validated in SimMechanics environment. Furthermore, other terms affecting the robot dynamics are modeled, and by using the linear regression form of the robot dynamics with the required physical bounds on the parameters, the identification process is accomplished adopting the least-squares method with appropriate physical consistency. Finally, by using the criteria of the normalized root mean squared error (NRMSE) and using different trajectories, the accuracy of the identified dynamic parameters is evaluated. The experimental validation results demonstrate a good fitness for the actuator torques (about 75 percent), and a positive mass matrix in the entire workspace, which allows us to design the common model-based controllers such as the computer torque method, for precise control of the robot in vitreoretinal ophthalmic surgery.

کلیدواژه‌ها English

Spherical Parallel Robots
Linear form of Spherical parallel Robot Dynamics
Dynamic Identification of Robots with Physical Consistency
Dynamic Calibration of Spherical Parallel Robots
[1] A. Molaei, E. Abedloo, H. D. Taghirad, and Z. Marvi, “Kinematic and workspace analysis of DIAMOND: An innovative eye surgery robot,” in 2015 23rd Iranian Conference on Electrical Engineering, 2015, pp. 882–887, doi: 10.1109/IranianCEE.2015.7146336.
[2] A. Bataleblu, R. Khorrambakht, and H. D. Taghirad, “Robust H∞-based control of ARAS-diamond: A vitrectomy eye surgery robot,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., p. 095440622097933, Dec. 2020, doi: 10.1177/0954406220979334.
[3] P. Agand, H. D. Taghirad, and A. Molaee, “Vision-based kinematic calibration of spherical robots,” in 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), 2015, pp. 395–400, doi: 10.1109/ICRoM.2015.7367817.
[4] H. Damirchi, R. Khorrambakht, and H. D. Taghirad, “ARAS-IREF: An Open-Source Low-Cost Framework for Pose Estimation,” in 2019 7th International Conference on Robotics and Mechatronics (ICRoM), 2019, doi: 10.1109/icrom48714.2019.9071852.
[5] A. Bataleblu, M. Motaharifar, E. Abedlu, and H. D. Taghirad, “Robust H∞ control of a 2RT parallel robot for eye surgery,” in 2016 4th International Conference on Robotics and Mechatronics (ICROM), 2016, pp. 136–141, doi: 10.1109/ICRoM.2016.7886835.
[6] Khalilpour Seyedi SA, Khorrambakht R, Bourbour AR, Taghirad HR. Joint-space position control of a deployable cable driven robot in joint space using force sensors and actuator encoders. Modares Mechanical Engineering. 2019 Nov 10;19(11):2615-25.
[7] S. Bai, X. Li, and J. Angeles, “A review of spherical motion generation using either spherical parallel manipulators or spherical motors,” Mech. Mach. Theory, vol. 140, pp. 377–388, 2019, doi: https://doi.org/10.1016/j.mechmachtheory.2019.06.012.
[8] E. Abedloo, A. Molaei, and H. D. Taghirad, “Closed-form dynamic formulation of spherical parallel manipulators by Gibbs-Appell method,” in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 576–581, doi: 10.1109/ICRoM.2014.6990964.
[9] Mahdizadeh O, Meymand AZ, Mollahossein M, Moosavian SA. Kinematics and dynamics modeling of spherical parallel manipulator. In2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM) 2018 Oct 23 (pp. 406-412). IEEE.
[10] A. Arian, B. Danaei, and M. T. Masouleh, “Kinematics and dynamics analysis of a 2-dof spherical parallel robot,” in 2016 4th international conference on robotics and mechatronics (ICROM), 2016, pp. 154–159, doi: 10.1109/ICRoM.2016.7886838.
[11] B. Danaei, A. Arian, M. Tale Masouleh, and A. Kalhor, “Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism,” Multibody Syst. Dyn., vol. 41, no. 4, pp. 367–390, Jun. 2017, doi: 10.1007/s11044-017-9578-3.
[12] A. Codourey and E. Burdet, “A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots,” in Proceedings of international conference on robotics and automation, 1997, vol. 2, pp. 1612–1618, doi: 10.1109/ROBOT.1997.614371.
[13] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter identification of robots,” Robot. Comput. Integr. Manuf., vol. 26, no. 5, pp. 414–419, 2010, doi: https://doi.org/10.1016/j.rcim.2010.03.013.
[14] Craig JJ, Hsu P, Sastry SS. Adaptive control of mechanical manipulators. The International Journal of Robotics Research. 1987 Jun;6(2):16-28.
[15] Slotine JJ, Li W. On the adaptive control of robot manipulators. The international journal of robotics research. 1987 Sep;6(3):49-59.
[16] G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Modelling and identification of the da Vinci Research Kit robotic arms,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, doi: 10.1109/iros.2017.8205948.
[17] Y. Wang, R. Gondokaryono, A. Munawar, and G. S. Fischer, “A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit,” {IEEE} Robot. Autom. Lett., vol. 4, no. 4, pp. 3657–3664, Oct. 2019, doi: 10.1109/lra.2019.2927947.
[18] Golluccio G, Gillini G, Marino A, Antonelli G. Robot Dynamics Identification: A
Reproducible Comparison With Experiments on the KINOVA Jaco2. IEEE Robotics &
Automation Magazine. 2020 Jul 29.
[19] C. D. Sousa and R. Cortesão, “Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach,” Int. J. Rob. Res., vol. 33, no. 6, pp. 931–944, 2014, doi: 10.1177/0278364913514870.
[20] C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based Optimization,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4147–4154, Oct. 2019, doi: 10.1109/lra.2019.2931248.
[21] L.-W. Tsai, “Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work ,” J. Mech. Des., vol. 122, no. 1, pp. 3–9, 1999, doi: 10.1115/1.533540.
[22] Taghirad HD. Parallel robots: mechanics and control. CRC press; 2013 Feb 20.
[23] Ding L, Li X, Li Q, Chao Y. Nonlinear friction and dynamical identification for a robot
manipulator with improved cuckoo search algorithm. Journal of Robotics. 2018 Jan 1;2018.
[24] J. Klodmann, D. Lakatos, C. Ott, and A. Albu-Schäffer, “A Closed-Form Approach to Determine the Base Inertial Parameters of Complex Structured Robotic Systems,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 316–321, 2015, doi: https://doi.org/10.1016/j.ifacol.2015.05.021.
[25] E. Dombre and W. Khalil, Eds., Modeling, Performance Analysis and Control of Robot Manipulators. ISTE, 2007.
[26] Y. R. Stürz, L. M. Affolter, and R. S. Smith, “Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6863–6868, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.1208.
[27] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brussel, “Optimal robot excitation and identification,” IEEE Trans. Robot. Autom., vol. 13, no. 5, pp. 730–740, 1997, doi: 10.1109/70.631234.
[28] Ljung L, Singh R. Version 8 of the MATLAB system identification toolbox. IFAC Proceedings Volumes. 2012 Jul 1;45(16):1826-31.