مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی کرنش های پسماند در نمونه‌های تقویت شده با الیاف پیوسته در فرآیند لایه نشانی مذاب به کمک برهمنگاری تصاویر دیجیتال

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تربیت مدرس
چکیده
در این مقاله، تأثیر حضور الیاف در نمونه‌های تقویت شده با الیاف پیوسته در فرآیند لایه نشانی مذاب، بر میزان تنش و کرنش های پسماند ایجاد شده در حین فرآیند لایه نشانی مذاب بررسی شده است. یکی از مهمترین مسائل در فرآیند FDM اعوجاج قطعات تولیدی در حین پرینت می‌باشد. اعوجاج ایجاد شده عمدتاً به دلیل سیکل‌های سریع گرم شدن و خنک شدن ماده بوده که منجر به ایجاد تنش پسماند در نمونه می‌شود. هدف اصلی این تحقیق اندازه­گیری میزان کرنش پسماند آزاد شده در اثر تنش پسماند موجود در نمونه‌های تقویت نشده و تقویت شده پلی لاکتیک اسید با الیاف پیوسته به کمک روش برهمنگاری تصاویر دیجیتال و سوراخکاری می‌باشد. روش برهمنگاری تصاویر دیجیتال از روش­های نوری غیر­تماسی و نوین جهت اندازه گیری جابجایی ها، تشخیص عیوب و بررسی خواص قطعات می­باشد. طبق نتایج بدست آمده وجود الیاف پیوسته در نمونه ها موجب ایجاد تنشهای پسماند و کرنشهای باقیمانده در قطعات خواهد شدکه ببیشینه میزان کرنش ایجاد شده در نمونه تقویت شده با الیاف در راستای x و y به ترتیب برابر با 1.09 و 0.34 درصد بوده است. نتایج نشان می دهند که کرنش‌های آزاد شده در نمونه تقویت شده در تمامی مراحل سوراخ کاری بیشتر از نمونه تقویت نشده بوده است. لذا وجود الیاف پیوسته موجب افزایش تنشهای باقیمانده و در نتیجه ایجاد اعوجاجات بعدی در تولید نمونه های تولید شده با روش لایه نشانی مذاب خواهد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the Residual Strains in the Continuous Fiber Reinforced Specimens of the Fused Deposition Modeling Process Using Digital Image Correlation Method

نویسندگان English

Farid Azadi
Amir hosein Behravesh
Davood Akbari
Seyyed kaveh Hedayati
چکیده English

In this study, the effect of fiber presence in continuous fiber reinforced Fused Deposition Modeling samples (FDM) on the stress and residual strain created during the process was investigated. The FDM process has become one of the most widely used Additive Manufacturing methods for layered prototypes from a three-dimensional model. One of the most important issues in this process is the distortion of parts produced during printing. The distortion created is mainly due to the rapid cycles of melting and solidification of the material, which produce residual stresses in the sample. The main objective of this study was to measure the residual strain rate of residual stress in unreinforced and reinforced PLA samples with continuous fiber using digital image correlation and hole drilling technique. Digital imaging is one of the novel non-contact optical methods for measuring displacements, detecting defects and investigating the properties of components. Among the various optical methods, digital image correlation is superior to other optical methods due to its low cost, high speed and no need for phase analysis. According to the results, the maximum strain in the fiber reinforced specimen in the x and y directions was 1.09 and 0.34%, respectively. The strains released in the reinforced specimen were higher than other specimen at all stages of drilling.

کلیدواژه‌ها English

Digital Image Correlation
Continuous fibers
Fused Deposition Modeling
Shokrieh, M.M., Residual stresses in composite materials. 2014: Woodhead publishing. [DOI:10.1533/9780857098597.1.173]
Shokrieh, M.M., Residual stresses in composite materials. 2014: Woodhead publishing. [DOI:10.1533/9780857098597.1.173]
Schajer, G.S., Practical residual stress measurement methods. 2013: John Wiley & Sons. [DOI:10.1002/9781118402832]
Schajer, G.S., Practical residual stress measurement methods. 2013: John Wiley & Sons. [DOI:10.1002/9781118402832]
Schajer, G.S., Advances in hole-drilling residual stress measurements. Experimental mechanics, 2010. 50(2): p. 159-168. [DOI:10.1007/s11340-009-9228-7]
Schajer, G.S., Advances in hole-drilling residual stress measurements. Experimental mechanics, 2010. 50(2): p. 159-168. [DOI:10.1007/s11340-009-9228-7]
Ahn, S.H., et al., Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal, 2002. [DOI:10.1108/13552540210441166]
Ahn, S.H., et al., Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal, 2002. [DOI:10.1108/13552540210441166]
Sood, A.K., R. Ohdar, and S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & Design, 2009. 30(10): p. 4243-4252. [DOI:10.1016/j.matdes.2009.04.030]
Sood, A.K., R. Ohdar, and S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & Design, 2009. 30(10): p. 4243-4252. [DOI:10.1016/j.matdes.2009.04.030]
Akhoundi, B., A.H. Behravesh, and A. Bagheri Saed, Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics and Composites, 2019. 38(3): p. 99-116. [DOI:10.1177/0731684418807300]
Akhoundi, B., A.H. Behravesh, and A. Bagheri Saed, Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics and Composites, 2019. 38(3): p. 99-116. [DOI:10.1177/0731684418807300]
Schajer, G.S., B. Winiarski, and P. Withers, Hole-drilling residual stress measurement with artifact correction using full-field DIC. Experimental Mechanics, 2013. 53(2): p. 255-265. [DOI:10.1007/s11340-012-9626-0]
Schajer, G.S., B. Winiarski, and P. Withers, Hole-drilling residual stress measurement with artifact correction using full-field DIC. Experimental Mechanics, 2013. 53(2): p. 255-265. [DOI:10.1007/s11340-012-9626-0]
Huang, X., Z. Liu, and H. Xie, Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 2013. 26(6): p. 570-583. [DOI:10.1016/S0894-9166(14)60002-1]
Huang, X., Z. Liu, and H. Xie, Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 2013. 26(6): p. 570-583. [DOI:10.1016/S0894-9166(14)60002-1]
Sutton, M.A., et al., Determination of displacements using an improved digital correlation method. Image and vision computing, 1983. 1(3): p. 133-139. [DOI:10.1016/0262-8856(83)90064-1]
Sutton, M.A., et al., Determination of displacements using an improved digital correlation method. Image and vision computing, 1983. 1(3): p. 133-139. [DOI:10.1016/0262-8856(83)90064-1]
Gebhardt, A., Rapid prototyping. 2003. [DOI:10.3139/9783446402690.fm]
Gebhardt, A., Rapid prototyping. 2003. [DOI:10.3139/9783446402690.fm]
Prevey, P.S., X-ray diffraction residual stress techniques. ASM International, ASM Handbook., 1986. 10: p. 380-392. [DOI:10.31399/asm.hb.v10.a0001761]
Prevey, P.S., X-ray diffraction residual stress techniques. ASM International, ASM Handbook., 1986. 10: p. 380-392. [DOI:10.31399/asm.hb.v10.a0001761]
Adachi, T., et al., Measurement of microscopic stress distribution of multilayered composite by X-ray stress analysis. Materials Letters, 2003. 57(20): p. 3057-3062. [DOI:10.1016/S0167-577X(02)01436-2]
Adachi, T., et al., Measurement of microscopic stress distribution of multilayered composite by X-ray stress analysis. Materials Letters, 2003. 57(20): p. 3057-3062. [DOI:10.1016/S0167-577X(02)01436-2]
ASTME83713-a, Standard Test Method for Determining Residual Stresses by the Hole‐Drilling Strain Gauge Method. 2013, American Society for Testing and Materials: West Conshohocken.
ASTME83713-a, Standard Test Method for Determining Residual Stresses by the Hole‐Drilling Strain Gauge Method. 2013, American Society for Testing and Materials: West Conshohocken.
Haddadi, H. and S. Belhabib, Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Optics and Lasers in Engineering, 2008. 46(2): p. 185-196. [DOI:10.1016/j.optlaseng.2007.05.008]
Haddadi, H. and S. Belhabib, Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Optics and Lasers in Engineering, 2008. 46(2): p. 185-196. [DOI:10.1016/j.optlaseng.2007.05.008]
Zhang, D.S. and D.D. Arola, Applications of digital image correlation to biological tissues. Journal of Biomedical Optics, 2004. 9(4): p. 691-700. [DOI:10.1117/1.1753270]
Zhang, D.S. and D.D. Arola, Applications of digital image correlation to biological tissues. Journal of Biomedical Optics, 2004. 9(4): p. 691-700. [DOI:10.1117/1.1753270]
Yoneyama, S., et al., Lens distortion correction for digital image correlation by measuring rigid body displacement. Optical engineering, 2006. 45(2): p. 023602. [DOI:10.1117/1.2168411]
Yoneyama, S., et al., Lens distortion correction for digital image correlation by measuring rigid body displacement. Optical engineering, 2006. 45(2): p. 023602. [DOI:10.1117/1.2168411]
Patterson, E.A., et al., Calibration and evaluation of optical systems for full-field strain measurement. Optics and Lasers in Engineering, 2007. 45(5): p. 550-564. [DOI:10.1016/j.optlaseng.2006.08.012]
Patterson, E.A., et al., Calibration and evaluation of optical systems for full-field strain measurement. Optics and Lasers in Engineering, 2007. 45(5): p. 550-564. [DOI:10.1016/j.optlaseng.2006.08.012]
Azadi, F., et al., Development of digital image correlation method for non-destructive measurement of residual stress. Fifteenth National Conference and Fourth International Conference on Manufacturing Engineering, Tehran, 2018, https://civilica.com/doc/837888.
Azadi, F., et al., Development of digital image correlation method for non-destructive measurement of residual stress. Fifteenth National Conference and Fourth International Conference on Manufacturing Engineering, Tehran, 2018, https://civilica.com/doc/837888.
Kaw, A.K. Mechanics of composite materials. CRC press; 2005 Nov 2,
https://doi.org/10.1201/9781420058291 [DOI:10.1201/9781420058291.]
Kaw, A.K. Mechanics of composite materials. CRC press; 2005 Nov 2,
https://doi.org/10.1201/9781420058291 [DOI:10.1201/9781420058291.]
Hedayati, S.K, et al., 3D Printed PCL Scaffold Reinforced with Continuous Biodegradable Fiber
Hedayati, S.K, et al., 3D Printed PCL Scaffold Reinforced with Continuous Biodegradable Fiber
Yarn: A Study on Mechanical and Cell Viability Properties Mechanics of composite materials. Polymer Testing, 2020. 83: P. 106347. [DOI:10.1016/j.polymertesting.2020.106347]
Yarn: A Study on Mechanical and Cell Viability Properties Mechanics of composite materials. Polymer Testing, 2020. 83: P. 106347. [DOI:10.1016/j.polymertesting.2020.106347]