مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کاربرد پردازش تصویر برای بررسی سطح شکست فولاد API X70 در آزمایش ضربه شارپی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه بیرجند
چکیده
آزمایش ضربه شارپی یک روش تجربی برای بررسی رفتار شکست دینامیکی مواد و مصالح مهندسی است که در دماهای مختلف بمنظور بررسی رفتار انتقال نرم به ترد مواد انجام میشود. محاسبه درصد شکست نرم و ترد سطح شکست نمونه شارپی با استفاده از روشهای چشمی و مقایسهای (طبق استاندارد API E23) انجام میشود که مقادیر دقیق شکست نرم و ترد را گزارش نمی‌کند. در این تحقیق، روشی برای محاسبه میزان دقیق درصد شکست نرم با استفاده از پردازش تصویر ارائه شده است که امکان بررسی قسمتهای مختلف سطح شکست را به صورت کمی با دقت بالا فراهم می‌کند. مراحل پردازش تصویر برای سطح شکست یازده نمونه استاندارد شارپی از فولاد API X70 آزمایش شده در دمای 20+ تا 80- درجه سلسیوس و با فاصله دمایی ده درجه شرح داده میشود. در این تحقیق برای اولین بار تبدیل تصویر کیفی سطح شکست شارپی به یک ماتریس کمی از مقدار درصد شکست ترد انجام شده است. تصاویر سطح شکست در یک قالب یکسان، شبکهبندی شده و هر تصویر با بیان یک ماتریس کمیسازی میشود. امکان پیشبینی شکل قسمتهای نرم و ترد از سطح شکست در دمای متفاوت در محدوده 20+ تا 80- درجه سلسیوس از نتایج این تحقیق است. مقدار شکست نرم با استفاده از پردازش تصویر برای دماهای20+، 0 ، 20-، 40-، 60- و 80- درجه سلسیوس به ترتیب100، 100، 86، 53، 36 و 0 درصد گزارش شده است. دمای انتقال برای فولاد آزمایش شده منطبق با شکست نرم 50 درصد، 45- درجه سلسیوس بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of image processing to study fracture surface of API X70 steel under Charpy impact test

نویسندگان English

Hosein Samadieh Labbaf
Sayyed Hashemi
University of Birjand
چکیده English

The Charpy impact test is an experimental method for determination of materials dynamic properties at different temperatures to investigate the ductile to brittle transition behavior of tested materials. The percentages of ductile and brittle fractures can be evaluated based on fracture area of Charpy specimen (according to API E23 standard) by visual techniques which do not provide exact percentages of these fractures. In this study, a method is proposed to calculate the exact percentage of ductile fractures using image processing, which makes it possible to quantitatively examine different parts of the fracture surface with high accuracy. All steps of image processing are described for eleven Charpy standard specimens of API X70 steel, tested at temperatures between +20 to -80 °C with a temperature increment of 10 °C. In this research, converting a qualitative image of fracture surface to a quantitative matrix is described for the first time. Prediction of the shape of ductile and brittle parts of the fracture surface at temperatures between +20 and -80 °C is one of the results of this study. The percentages of ductile fractures using image processing for temperatures of +20, 0, -20, -40, -40, -60 and -80 °C were obtained as 100, 100, 86, 53, 36 and 0, respectively. The transition temperature was -45 °C for this steel, corresponding of 50% ductile fracture.

کلیدواژه‌ها English

Charpy Impact Test
API X70 steel
Image processing
Ductile and Brittle fracture surface
Gas Transportation Pipeline
[1] B. Verlinden, Thermo-mechanical Processing of Metallic Materials, 1st Edition, Elsevier Ltd, 2007.
[1] B. Verlinden, Thermo-mechanical Processing of Metallic Materials, 1st Edition, Elsevier Ltd, 2007.
[2] Z. Zhou, Z. Tong, G. Qian, W. Zhong, C. Wang, W. Yang, and F. Berto, Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range, Engineering Failure Analysis, Vol. 97, pp. 836-843, 2019. [DOI:10.1016/j.engfailanal.2019.01.053]
[2] Z. Zhou, Z. Tong, G. Qian, W. Zhong, C. Wang, W. Yang, and F. Berto, Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range, Engineering Failure Analysis, Vol. 97, pp. 836-843, 2019. [DOI:10.1016/j.engfailanal.2019.01.053]
[3] B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Engineering Fracture Mechanics, Vol. 72, pp. 49-72, 2005. [DOI:10.1016/j.engfracmech.2004.03.010]
[3] B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Engineering Fracture Mechanics, Vol. 72, pp. 49-72, 2005. [DOI:10.1016/j.engfracmech.2004.03.010]
[4] S. H. Hashemi, D. Mohammadyani, M. Pouranvari and S. M. Mousavizadeh, On the relation of microstructure and impact toughness characteristics of DSAW steel of grade API X70, Fatigue & Fracture of Engineering Materials & Structures, Vol. 32, No. 1, pp. 33-40, 2009. [DOI:10.1111/j.1460-2695.2008.01312.x]
[4] S. H. Hashemi, D. Mohammadyani, M. Pouranvari and S. M. Mousavizadeh, On the relation of microstructure and impact toughness characteristics of DSAW steel of grade API X70, Fatigue & Fracture of Engineering Materials & Structures, Vol. 32, No. 1, pp. 33-40, 2009. [DOI:10.1111/j.1460-2695.2008.01312.x]
[5]‌‌ ‌S. Y. Shin, B. Hwang, S. Kim, S. Lee, Fracture toughness analysis in transition temperature region of API X70 pipeline steels, Materials Science and Engineering A, Vol. 429, pp. 196-204, 2006. [DOI:10.1016/j.msea.2006.05.086]
[5]‌‌ ‌S. Y. Shin, B. Hwang, S. Kim, S. Lee, Fracture toughness analysis in transition temperature region of API X70 pipeline steels, Materials Science and Engineering A, Vol. 429, pp. 196-204, 2006. [DOI:10.1016/j.msea.2006.05.086]
[6] S. Y. Shin, B. Hwang, S. Kim, S. Lee, Analysis of fracture toughness in the transition temperature region of API X70 pipeline steels rolled in two-phase region, Metallurgical and Materials Transactions A, Vol. 38A, No. 5, pp. 1012-1021, 2007. [DOI:10.1007/s11661-007-9125-6]
[6] S. Y. Shin, B. Hwang, S. Kim, S. Lee, Analysis of fracture toughness in the transition temperature region of API X70 pipeline steels rolled in two-phase region, Metallurgical and Materials Transactions A, Vol. 38A, No. 5, pp. 1012-1021, 2007. [DOI:10.1007/s11661-007-9125-6]
[7] S. H. Hashemi, Apportion of Charpy energy in API 5L grade X70 pipeline steel, International Journal of Pressure Vessels and Piping, Vol.85, No. 12, pp. 879-884, 2008. [DOI:10.1016/j.ijpvp.2008.04.011]
[7] S. H. Hashemi, Apportion of Charpy energy in API 5L grade X70 pipeline steel, International Journal of Pressure Vessels and Piping, Vol.85, No. 12, pp. 879-884, 2008. [DOI:10.1016/j.ijpvp.2008.04.011]
[8] B. Beidokhti, A.H. Koukabi, A. Dolati, Influences of titanium and manganese on high strength low alloy SAW weld metal properties, Materials Characterization, Vol. 60, pp. 225-233, 2009. [DOI:10.1016/j.matchar.2008.09.005]
[8] B. Beidokhti, A.H. Koukabi, A. Dolati, Influences of titanium and manganese on high strength low alloy SAW weld metal properties, Materials Characterization, Vol. 60, pp. 225-233, 2009. [DOI:10.1016/j.matchar.2008.09.005]
[9] J. Capelle, J. Furtado, Z. Azari, S. Jallais, G. Pluvinage, Design based on ductile-brittle transition temperature for API 5L X65 steel used for dense co2 transport, Engineering Fracture Mechanics, Vol. 110, pp. 270-280, 2013. [DOI:10.1016/j.engfracmech.2013.08.009]
[9] J. Capelle, J. Furtado, Z. Azari, S. Jallais, G. Pluvinage, Design based on ductile-brittle transition temperature for API 5L X65 steel used for dense co2 transport, Engineering Fracture Mechanics, Vol. 110, pp. 270-280, 2013. [DOI:10.1016/j.engfracmech.2013.08.009]
[10] G. Pluvinage, M. B. Amara, J. Capelle, Z. Azari, Role of constraint on ductile brittle transition temperature of pipe steel X65, Procedia Materials Science, Vol. 3, pp. 1560-1565, 2014. [DOI:10.1016/j.mspro.2014.06.252]
[10] G. Pluvinage, M. B. Amara, J. Capelle, Z. Azari, Role of constraint on ductile brittle transition temperature of pipe steel X65, Procedia Materials Science, Vol. 3, pp. 1560-1565, 2014. [DOI:10.1016/j.mspro.2014.06.252]
[11] E. Lucon, C. N. McCowan, R. L. Santoyo, Impact characterization of line pipe steels by means of standard, sub-size and miniaturized charpy specimens, National Institute of Standards and Technology Technical Note 1865, 2015. [DOI:10.6028/NIST.TN.1865]
[11] E. Lucon, C. N. McCowan, R. L. Santoyo, Impact characterization of line pipe steels by means of standard, sub-size and miniaturized charpy specimens, National Institute of Standards and Technology Technical Note 1865, 2015. [DOI:10.6028/NIST.TN.1865]
[12]R. Maksuti, Fractographic analysis of welded joint surfaces, International scientific journal machines technologies materials, Vol. 37, No. 12, pp. 34-37, 2016.
[12]R. Maksuti, Fractographic analysis of welded joint surfaces, International scientific journal machines technologies materials, Vol. 37, No. 12, pp. 34-37, 2016.
[13] H. Kawata, O. Umezawa, Two step ductile to brittle transition behavior on ferrite+pearlite structure steel sheet, International Advance Publication by J-stage, Vol. 57, No. 7, pp. 1282-1288, 2017. [DOI:10.2355/isijinternational.ISIJINT-2017-026]
[13] H. Kawata, O. Umezawa, Two step ductile to brittle transition behavior on ferrite+pearlite structure steel sheet, International Advance Publication by J-stage, Vol. 57, No. 7, pp. 1282-1288, 2017. [DOI:10.2355/isijinternational.ISIJINT-2017-026]
[14] S. V. Panin, P. O. Maruschak, I. V. Vlasov, D. D. Moiseenko, F. Berto, A.Vinogradov, Effect of temperature-force factors and concentrator shape on impact fracture mechanisms of 17Mn1Si steel, Advances in Materials Science and Engineering, Vol. 2017, pp. 1-12, 2017. [DOI:10.1155/2017/9867217]
[14] S. V. Panin, P. O. Maruschak, I. V. Vlasov, D. D. Moiseenko, F. Berto, A.Vinogradov, Effect of temperature-force factors and concentrator shape on impact fracture mechanisms of 17Mn1Si steel, Advances in Materials Science and Engineering, Vol. 2017, pp. 1-12, 2017. [DOI:10.1155/2017/9867217]
[15] C. N. McCowan, E. Lucon, R. L. Santoyo, Fracture appearance of steels in transition: experimental observations and measurements, Journal of Testing and Evaluation, Vol. 47 ,No. 2, pp. 1009-1022, 2019. [DOI:10.1520/JTE20170448]
[15] C. N. McCowan, E. Lucon, R. L. Santoyo, Fracture appearance of steels in transition: experimental observations and measurements, Journal of Testing and Evaluation, Vol. 47 ,No. 2, pp. 1009-1022, 2019. [DOI:10.1520/JTE20170448]
[16] T. C. Park, B. S. Kim, J. H. Son, Y. K. Yeo, A New Fracture Analysis Technique for Charpy Impact Test Using Image Processing, Korean Journal of Metals and Materials, Vol. 59, No. 1, pp. 61-66, 2021. [DOI:10.3365/KJMM.2021.59.1.61]
[16] T. C. Park, B. S. Kim, J. H. Son, Y. K. Yeo, A New Fracture Analysis Technique for Charpy Impact Test Using Image Processing, Korean Journal of Metals and Materials, Vol. 59, No. 1, pp. 61-66, 2021. [DOI:10.3365/KJMM.2021.59.1.61]
[17] API Specifications 5L, specifications for line pipe, Forty Fourth Edition, American Petroleum institute, 2007.
[17] API Specifications 5L, specifications for line pipe, Forty Fourth Edition, American Petroleum institute, 2007.
[18] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, Published May 2003.
[18] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, Published May 2003.
[19] H. Khavanin, S. H. Hashemi, Comparison of fracture area of drop weight tear test and Charpy specimen in thermomechanical steel, Journal of Mechanical Engineering Transaction of ISME, Vol. 16, No. 3, pp. 68-78, 2014. (in Persion)
[19] H. Khavanin, S. H. Hashemi, Comparison of fracture area of drop weight tear test and Charpy specimen in thermomechanical steel, Journal of Mechanical Engineering Transaction of ISME, Vol. 16, No. 3, pp. 68-78, 2014. (in Persion)
[20] O. K. Chopra and W. J. Shack, Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components, Argonne National Laboratory, 1995. [DOI:10.2172/71383]
[20] O. K. Chopra and W. J. Shack, Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components, Argonne National Laboratory, 1995. [DOI:10.2172/71383]