مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی و عددی گردابه های روی سطح بال وینگ سوت بر عملکرد پروازی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه سمنان
چکیده
حرفه وینگ سوت جزو یکی از رسته های پرطرفدار پروازی در دهه های اخیر می باشد. کارایی و امنیت در الویت اول طراحان لباس های این حرفه هوانوردی قرار گرفته است. تغییرات موجی شکل در سطح بال یک مدل وینگ سوت در این مقاله بررسی شده است که عملکرد آیرودینامیکی را تحت شرایط جریان خاص بهبود می بخشد. یکی از مکانیسم های افزایش عملکرد، تولید گردابه است که تبادل حرکت در لایه مرزی را بهبود می بخشد. این مطالعه تجربی و عددی شکل‌گیری و تکامل این گردابه ‌ها را در محدوده عدد رینولدز 106 بررسی می‌کند و بینشی را در مورد الگوهای جریان با هندسه روی سطح ارائه می‌دهد. ارزیابی های بدست آمده از مشاهدات تجربی و عددی امکان بررسی دقیق ساختار جریان را فراهم می‌کند. نتایج نشان می دهد که حضور قوی فشار در نزدیکی کوله پشتی باعث ایجاد مولد های قابل توجهی از گردابه در این ناحیه می شود. به محض ایجاد این گردابه ها، جریان تحت تاثیر آن روی سطح بال به صورت سه بعدی کشیده و منتشر می گردد. این فرآیندها منجر به جدایش زودهنگام تحت تاثیر زاویه حمله می گردد. بررسی ضرایب برآ و پسا نشان می دهد که، برای این رژیم جریان، مدل مورد مطالعه در زاویه حمله 10 درجه بهترین کارایی در پرواز را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

An experimental and numerical investigation of vortices on the effect of vortices on the performance of a wingsuit

نویسندگان English

mohsen nazemian alaei
mohammad sadegh valipour
Semnan University
چکیده English

Wingsuit flying is one of the most popular flight disciplines in recent decades. In the aviation profession, efficiency and safety are paramount concerns for costume designers. An article in this issue examines how waveform changes to the wing surfaces of a wingsuit model improves aerodynamic performance. In order to increase performance, vortices are produced inside the boundary layer that improve the exchange of motion. In this experimental and numerical study, we investigate the formation and evolution of vortices in the Reynolds number range of 106 and provide insights into flow patterns on surfaces with geometric changes. A detailed study of flow structure can be obtained from experimental and numerical evaluations. According to the results, there are significant vortex generators near the backpack due to high pressure. Immediately after the creation of these vortices, the flow is drawn and spread on the surface of the wing in three dimensions. As a result of the angle of attack, the wing surface separates prematurely. Based on the lift and drag coefficients, the study model showed the best performance in flight at an angle of attack of 10 degrees for this flow regime.

کلیدواژه‌ها English

Wingsuit
Flow pattern
Aerodynamic coefficients
Wind tunnel
Computational Fluid Dynamics
[1] K. Gersten, "Hermann Schlichting and the boundary-layer theory," in Hermann Schlichting-100 Years: Springer, 2009, pp. 3-17. [DOI:10.1007/978-3-540-95998-4_2]
[1] K. Gersten, "Hermann Schlichting and the boundary-layer theory," in Hermann Schlichting-100 Years: Springer, 2009, pp. 3-17. [DOI:10.1007/978-3-540-95998-4_2]
[2] N. Rostamzadeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," Physics of fluids, vol. 25, no. 11, p. 117101, 2013. [DOI:10.1063/1.4828703]
[2] N. Rostamzadeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," Physics of fluids, vol. 25, no. 11, p. 117101, 2013. [DOI:10.1063/1.4828703]
[3] A. Hedenström, L. C. Johansson, and G. R. Spedding, "Bird or bat: comparing airframe design and flight performance," Bioinspiration & Biomimetics, vol. 4, no. 1, p. 015001, 2009. [DOI:10.1088/1748-3182/4/1/015001]
[3] A. Hedenström, L. C. Johansson, and G. R. Spedding, "Bird or bat: comparing airframe design and flight performance," Bioinspiration & Biomimetics, vol. 4, no. 1, p. 015001, 2009. [DOI:10.1088/1748-3182/4/1/015001]
[4] D. M. Bushnell and K. Moore, "Drag reduction in nature," Annual review of fluid mechanics, vol. 23, no. 1, pp. 65-79, 1991. [DOI:10.1146/annurev.fl.23.010191.000433]
[4] D. M. Bushnell and K. Moore, "Drag reduction in nature," Annual review of fluid mechanics, vol. 23, no. 1, pp. 65-79, 1991. [DOI:10.1146/annurev.fl.23.010191.000433]
[5] F. E. Fish and J. M. Battle, "Hydrodynamic Design of the humpback whale flipper," Journal of morphology, vol. 225, no. 1, pp. 51-60, 1995. [DOI:10.1002/jmor.1052250105]
[5] F. E. Fish and J. M. Battle, "Hydrodynamic Design of the humpback whale flipper," Journal of morphology, vol. 225, no. 1, pp. 51-60, 1995. [DOI:10.1002/jmor.1052250105]
[6] P. W. Bearman and J. C. Owen, "Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines," Journal of Fluids and Structures, vol. 12, no. 1, pp. 123-130, 1998. [DOI:10.1006/jfls.1997.0128]
[6] P. W. Bearman and J. C. Owen, "Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines," Journal of Fluids and Structures, vol. 12, no. 1, pp. 123-130, 1998. [DOI:10.1006/jfls.1997.0128]
[7] D. S. Miklosovic, M. M. Murray, and L. E. Howle, "Experimental evaluation of sinusoidal leading edges," Journal of aircraft, vol. 44, no. 4, pp. 1404-1408, 2007. [DOI:10.2514/1.30303]
[7] D. S. Miklosovic, M. M. Murray, and L. E. Howle, "Experimental evaluation of sinusoidal leading edges," Journal of aircraft, vol. 44, no. 4, pp. 1404-1408, 2007. [DOI:10.2514/1.30303]
[8] H. Johari, C. Henoch, D. Custodio, and A. Levshin, "Effects of leading-edge protuberances on airfoil performance," AIAA Journal, vol. 45, no. 11, pp. 2634-2642, 2007. [DOI:10.2514/1.28497]
[8] H. Johari, C. Henoch, D. Custodio, and A. Levshin, "Effects of leading-edge protuberances on airfoil performance," AIAA Journal, vol. 45, no. 11, pp. 2634-2642, 2007. [DOI:10.2514/1.28497]
[9] H. Shan, L. Jiang, C. Liu, M. Love, and B. Maines, "Numerical study of passive and active flow separation control over a NACA0012 airfoil," Computers & fluids, vol. 37, no. 8, pp. 975-992, 2008. [DOI:10.1016/j.compfluid.2007.10.010]
[9] H. Shan, L. Jiang, C. Liu, M. Love, and B. Maines, "Numerical study of passive and active flow separation control over a NACA0012 airfoil," Computers & fluids, vol. 37, no. 8, pp. 975-992, 2008. [DOI:10.1016/j.compfluid.2007.10.010]
[10] J. Favier, A. Pinelli, and U. Piomelli, "Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers," Comptes Rendus Mecanique, vol. 340, no. 1-2, pp. 107-114, 2012. [DOI:10.1016/j.crme.2011.11.004]
[10] J. Favier, A. Pinelli, and U. Piomelli, "Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers," Comptes Rendus Mecanique, vol. 340, no. 1-2, pp. 107-114, 2012. [DOI:10.1016/j.crme.2011.11.004]
[11] A. Skillen, A. Revell, A. Pinelli, U. Piomelli, and J. Favier, "Flow over a wing with leading-edge undulations," Aiaa Journal, vol. 53, no. 2, pp. 464-472, 2015. [DOI:10.2514/1.J053142]
[11] A. Skillen, A. Revell, A. Pinelli, U. Piomelli, and J. Favier, "Flow over a wing with leading-edge undulations," Aiaa Journal, vol. 53, no. 2, pp. 464-472, 2015. [DOI:10.2514/1.J053142]
[12] J. Nedić and J. C. Vassilicos, "Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications," AIAA Journal, vol. 53, no. 11, pp. 3240-3250, 2015. [DOI:10.2514/1.J053834]
[12] J. Nedić and J. C. Vassilicos, "Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications," AIAA Journal, vol. 53, no. 11, pp. 3240-3250, 2015. [DOI:10.2514/1.J053834]
[13] M. Berry, J. Las Fargeas, and K. B. Blair, "Wind tunnel testing of a novel wingsuit design," Procedia Engineering, vol. 2, no. 2, pp. 2735-2740, 2010. [DOI:10.1016/j.proeng.2010.04.059]
[13] M. Berry, J. Las Fargeas, and K. B. Blair, "Wind tunnel testing of a novel wingsuit design," Procedia Engineering, vol. 2, no. 2, pp. 2735-2740, 2010. [DOI:10.1016/j.proeng.2010.04.059]
[14] T. A. Sestak, "The effect of surface materials and morphology on wingsuit aerodynamics," 2017.
[14] T. A. Sestak, "The effect of surface materials and morphology on wingsuit aerodynamics," 2017.
[15] N. Ansari, S. Krzywinski, and J. Fröhlich, "Towards a combined CAD and CFD development process of a wingsuit," in Multidisciplinary Digital Publishing Institute Proceedings, 2018, vol. 2, no. 6, p. 228. [DOI:10.3390/proceedings2060228]
[15] N. Ansari, S. Krzywinski, and J. Fröhlich, "Towards a combined CAD and CFD development process of a wingsuit," in Multidisciplinary Digital Publishing Institute Proceedings, 2018, vol. 2, no. 6, p. 228. [DOI:10.3390/proceedings2060228]
[16] M. Edwards, A. Furnell, J. Coleman, and S. Davis, "A preliminary anthropometry standard for Australian Army equipment evaluation," DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION FISHERMANS BEND (AUSTRALIA), 2014.
[16] M. Edwards, A. Furnell, J. Coleman, and S. Davis, "A preliminary anthropometry standard for Australian Army equipment evaluation," DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION FISHERMANS BEND (AUSTRALIA), 2014.
[17] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: including a summary of airfoil data. Courier Corporation, 2012.
[17] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: including a summary of airfoil data. Courier Corporation, 2012.
[18] M. H. Sadraey, Aircraft design: A systems engineering approach. John Wiley & Sons, 2012. [DOI:10.1002/9781118352700]
[18] M. H. Sadraey, Aircraft design: A systems engineering approach. John Wiley & Sons, 2012. [DOI:10.1002/9781118352700]
[19] S. Omholt, "CFD Modeling of a Wingsuit," Institutt for energi-og prosessteknikk, 2011.
[19] S. Omholt, "CFD Modeling of a Wingsuit," Institutt for energi-og prosessteknikk, 2011.
[20] N. Ansari, 3D Design and Simulation Methods for the Development of Wingsuits. TUDpress, 2019.
[20] N. Ansari, 3D Design and Simulation Methods for the Development of Wingsuits. TUDpress, 2019.
[21] N. Rostamzadeh Torghabeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," 2013. [DOI:10.1063/1.4828703]
[21] N. Rostamzadeh Torghabeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," 2013. [DOI:10.1063/1.4828703]