مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی تاثیر استفاده سیال غلیظ شونده برشی در ساختار ساندویچ پانل های هسته لانه زنبوری بر جذب انرژی در بارگذاری ضربه سرعت پایین

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده فنی و مهندسی، گروه مهندسی مکانیک، دانشگاه شهرکرد، ایران
2 دانشکده فنی و مهندسی، گروه مهندسی مکانیک، دانشگاه تفرش، ایران
چکیده
در این پژوهش، جذب انرژی در سازه ساندویچ پنل با هسته لانه زنبوری و پوسته از جنس کامپوزیت شیشه-اپوکسی چند لایه، آلومینیم و پارچه های شیشه ای دوبعدی آغشته به سیال غلیظ شونده برشی تحت بارگذاری ضربه سرعت پایین مورد بررسی قرار گرفته است. برای ساخت سیال غلیظ شونده برشی از پلی اتیلن گلایکول400 و سیلیکای دوده شده آب دوست با ابعاد نانومتری استفاده شده و سپس برای صحت سنجی از خواص رئولوژی سیال از دستگاه رئومتر استفاده شده است. آزمایش در دو ارتفاع 100 و 500 میلی متری با دستگاه سقوط وزنه انجام شده است. هسته لانه زنبوری ساندویچ پنل یک بار با سیال غلیظ شونده برشی پر شده و بار دیگر خالی از سیال غلیظ شونده برشی مورد برسی قرار گرفته است. نتایج آزمایش رئولوژی نشان دهنده آن است که با افزایش نرخ برش مقدار ویسکوزیته افزایش پیدا می کند. نتایج آزمایش ضربه نشان دهنده افزایش میزان جذب انرژی در سازه ساندویچ پنل های پر شده با سیال غلیظ شونده برشی نسبت به ساندویچ پنل های تو خالی می باشد. در ارتفاع سقوط 500 میلی متری جذب انرژی ویژه در سازه ساندویچ پنل با جنس پوسته از پارچه آغشته به سیال غلیظ شونده برشی نسبت ساندویچ پنل با جنس پوسته از آلومینیم و کامپوزیت به ترتیب 27/93 و 9/47 درصد افزایش یافته و جذب انرژی در ساندویچ پنل با جنس پوسته از کامپوزیت نسبت به ساندویچ پنل با جنس پوسته از آلومینیم 16/86 درصد افزایش یافته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation of the effect of using shear-thickening fluid in the structure of honeycomb-core sandwich panels on energy absorption in low-velocity impact loading

نویسندگان English

Sajjad Astaraki 1
Ehsan Zamani 1
Mohammad Hossein Pol 2
1 Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran
2 Department of Mechanical Engineering, Tafresh University, Tafresh, Iran
چکیده English

In this research, energy absorption in sandwich panel structures with honeycomb core and skin made of glass-epoxy multi-layer composite, aluminum, and two-dimensional glass fabrics impregnated with shear-thickening fluid under low-velocity impact loading has been investigated. Polyethylene glycol 400 and hydrophilic fumed silica with nanometer dimensions were used to make the shear thickening fluid, and then a rheometer was used to verify the rheological properties of the fluid. The test was carried out at two heights of 100 and 500 mm with a drop weight device. The sandwich panel honeycomb core has been tested once filled with shear thickening fluid and again empty of shear thickening fluid. The results of the rheology test show that the viscosity value increases with the increase of the shear rate. The impact test results show an increase in energy absorption in the structure of sandwich panels filled with shear thickening fluid compared to empty sandwich panels. At the drop height of 500 mm, the absorption of specific energy in the sandwich panel structure with a skin made of two-dimensional glass fabrics impregnated with shear thickening fluid, the ratio of sandwich panel with a skin made of aluminum and composite increased by 27.93, and 9.47%, respectively, and energy absorption in The sandwich panel with composite skin has increased by 16.86% compared to the sandwich panel with aluminum skin.

کلیدواژه‌ها English

energy absorption
Sandwich panel
Shear thickening fluid
Composite
[1] G. Sun, X. Huo, D. Chen, Q. Li, Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression, Mater. Des. 133,2017, 154–168.
[2] D. Zhang, Q. Fei, P. Zhang, Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor, Compos. Struct. 168,2017, 633–645.
[3] Y. Hou, Y. Zhang, X. Yan, X. Lai, J. Lin, Crushing behaviors of the thin-walled sandwich column under axial load, Thin-Walled Struct. 159,2021, 107229.
[4] S. Zangana, J. Epaarachchi, W. Ferdous, J. Leng, P. Schubel, Behaviour of continuous fiber composite sandwich core under the low velocity impact, Thin-Walled Struct. 158,2021, 107157.
[5] C. Liu, Y.X. Zhang, J. Li, Impact responses of sandwich panels with fiber metal laminate skins and aluminum foam core, Compos. Struct. 182,2017, 183–190.
[6] K.W. Jeon, K.B. Shin, An experimental investigation on low velocity impact responses of sandwich panels with the changes of impact location and the wall partition angle of honeycomb core, Int. J. Precis. Eng. Manuf. 13 (10),2012, 1789–1796.
[7] G. Palomba, G. Epasto, V. Crupi, E. Guglielmino, Single and double-layer honeycomb sandwich panels under impact loading, Int. J. Impact Eng. 121,2018, 77–90.
[8] X. Wu, K. Xiao, Q. Yin, F. Zhong, C. Huang, Experimental study on dynamic compressive behavior of sandwich panel with shear thickening fluid filled pyramidal lattice truss core, Int. J. Mech. Sci. 138 ,2018, 467–475.
[9] K. Fu, H. Wang, L. Chang, M. Foley, K. Friedrich, L. Ye, Low velocity impact behavior of a shear thickening fluid (STF) and STF-filled sandwich composite panels, Compos. Sci. Technol. 165,2018, 74–83.
[10] Y. Liu, W. Zhuang, D. Wu, Performance and damage of carbon fiber reinforced polymer tubes under the low velocity transverse impact, Thin-Walled Struct. 151,2020, 106727.
[11] U.A. Shakil, S.B. Hassan, M.Y. Yahya, D. Nurhadiyanto, A review of properties and fabrication techniques of fiber reinforced polymer nanocomposites subjected to simulated accidental ballistic impact, Thin-Walled Struct. 158,2021, 107150.
[12] Zarei H R, Rezaei M, Soveity S. Numerical simulation of shear thickening fluid impregnated polypropylene fabric and comparing with experimental results. Modares Mechanical Engineering 2017; 17 (2):221-230
[13] Zarei H, Shahnazar P, Meskini M, Sarkhosh R. Ballistic Performance Analysis of Ultra High Molecular Weight Polyethylene (UHMWPE) Composite. Modares Mechanical Engineering 2022; 22 (5):347-346
[14] Rashiddadash S, sadighi M. An Experimental and numerical investigation on low velocity impact properties of sandwich panels with bilateral connection. Modares Mechanical Engineering 2018; 18 (4):23-31
[15] J. Warren, K.R. Kota, S.M. Westberg, T. Lacy, S. Kundu, H. Toghiani, C.U. Pittman Jr, Hyper velocity impacts of shear thickening fluid imbibed metallic foam core sandwich panels, in 30th technical conference of American Society of Composites, East Lansing, USA,2015, pp. 28-30.
[16] C. Fischer, S.A. Braun, P.E. Bourban, V. Michaud, C.J. Plummer, J.E. Manson, Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Mater. Struct. 15 (5),2006, 1467.
[17] Z.H. Tan, L. Zuo, W.H. Li, L.S. Liu, P.C. Zhai, Dynamic response of symmetrical and asymmetrical sandwich plates with shear thickening fluid core subjected to penetration loading, Mater. Des. 94,2016, 105–110.
[18] H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology, Elsevier, 1989.
[19] Y.S. Lee, N.J. Wagner, Dynamic properties of shear thickening colloidal suspensions, Rheol. Acta 42 (3) ,2003, 199–208.
[20] Q.S. Wang, R.J. Sun, M. Yao, M.Y. Chen, Y. Feng, The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics, Composites A 116,2019, 46–53.
[21] N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions, Phys. Today 62 (10),2009, 27–32.
[22] A. Ghosh, A. Majumdar, B.S. Butola, Rheometry of novel shear thickening fluid and its application for improving the impact energy absorption of p-aramid fabric, Thin-Walled Struct. 155,2020, 106954.
[23] S. Gürgen, Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts, Thin-Walled Struct. 148,2020, 106573.
[24] L. Liu, Z. Yang, Z. Zhao, X. Liu, W. Chen, The influences of rheological property on the impact performance of Kevlar fabrics impregnated with SiO2/PEG shear thickening fluid, Thin-Walled Struct. 151,2020, 106717.
[25] A. Khodadadi, G. Liaghat, S. Vahid, A.R. Sabet, H. Hadavinia, Ballistic performance of Kevlar fabric impregnated with nano silica/PEG shear thickening fluid, Composites B 162,2019, 643–652.
[26] N. Asija, H. Chouhan, S.A. Gebremeskel, N. Bhatnagar, Impact response of shear thickening fluid (STF) treated ultra high molecular weight polyethylene composites–study of the effect of STF treatment method, Thin-Walled Struct. 126,2018, 16–25.
[27] U. Mawkhlieng, A. Majumdar, Designing of hybrid soft body armor using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid, Compos. Struct. 253,2020, 112776.
[28] U. Mawkhlieng, A. Majumdar, Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics, Composites B 175,2019, 107167.
[29] Y.S. Lee, E.D. Wetzel, N.J. Wagner, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, J. Mater. Sci. 38 (13),2003, 2825–2833.
[30] S. Gürgen, An investigation on composite laminates including shear thickening fluid under stab condition, J. Compos. Mater. 53 (8),2019, 1111–1122.
[31] A. Abbaszadeh, M. Yazdani, F. Abbasi, A. Rashed, Investigating the behavior of silicon-coated Kevlar fabric under low velocity impact: An experimental and numerical study, J. Thermoplastic Compos. Mater. 32 (5),2019, 635–656.
[32] S. Gürgen, M.C. Kuşhan, The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics, Mech. Adv. Mater. Struct. 24 (16),2017, 1381–1390.
[33] M. Bajya, A. Majumdar, B.S. Butola, S.K. Verma, D. Bhattacharjee, the Design strategy for optimizing weight and ballistic performance of soft body armor reinforced with shear thickening fluid, Composites B 183,2020, 107721.
[34] S. Arora, A. Majumdar, B.S. Butola, Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics, Compos. Struct. 210,2019, 41–48.
[35] L. Liu, M. Cai, X. Liu, Z. Zhao, W. Chen, Ballistic impact performance of multiphase STF-impregnated Kevlar fabrics in aero-engine containment, Thin-Walled Struct. 157,2020, 107103.
[36] S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Composites A 94,2017, 50–60.
[37] H. Hasan-nezhad, M. Yazdani, M. Salami-Kalajahi, M. Jeddi, Mechanical behavior of 3D GFRP composite with pure and treated shear thickening fluid matrix subject to quasi-static puncture and shear impact loading, J. Compos. Mater, 2020, 0021998320922288.
[38] A. Srivastava, A. Majumdar, B.S. Butola, Improving the impact resistance performance of Kevlar fabrics using silica-based shear thickening fluid, Mater. Sci. Eng. A 529,2011, 224–229.
[39] M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, E.D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics, Compos. Sci. Technol. 67 (3–4),2007, 565–578.
[40] M. Hasanzadeh, V. Mottaghitalab, The role of shear-thickening fluids (STFs) in the ballistic and stab-resistance improvement of flexible armor, J. Mater. Eng. Perform. 23 (4),2014, 1182–1196.
[41] M. Hasanzadeh, V. Mottaghitalab, M. Rezaei, H. Babaei, Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact, Thin-Walled Struct. 119,2017, 700–706.
[42] A. Majumdar, A. Laha, D. Bhattacharjee, I. Biswas, Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armor, Compos. Struct. 178,2017, 415–425.
[43] Y. Kim, Y. Park, J. Cha, V.A. Ankem, C.G. Kim, Behavior of shear thickening fluid (STF) impregnated fabric composite rear wall under hyper velocity impact, Compos. Struct. 204,2018, 52–62.
[44] R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of flow instability, Trans. Soc. Rheol. 16 (1) ,1972, 155–173.
[45] R.L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions, J. Rheol. 42 (1),1998, 111–123.
[46] G. Bossis, J.F. Brady, The rheology of Brownian suspensions, J. Chem. Phys. 91 (3),1989, 1866–1874.
[47] S. Gürgen, M.C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review, Prog. Polym. Sci. 75 ,2017, 48–72.
[48] N.Y. Lin, B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C. Poon, I. Cohen, Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions, Phys. Rev. Lett. 115 (22),2015, 228304.
[49] H. Safari, M. Karevan, H. Nahvi, Mechanical characterization of natural nanostructured zeolite/polyurethane filled 3D woven glass fiber composite sandwich panels, Polym. Test. 67,2018, 284–294.
[50] M. Azadian, H. Hasani, M.M. Shokrieh, Low velocity impact the behavior of 3D hollow core sandwich composites produced with flat-knitted spacer fabrics, Fibers Polym. 19 (12),2018, 2581–2589.
[51] G. Neje, B.K. Behera, Investigation of mechanical performance of 3D woven spacer sandwich composites with different cell geometries, Composites B 160,2019, 306–314.
[52] Z. Wu, S. Li, Z. Pan, X. Hu, Off-axial angle sensitivity of 3D orthogonal woven composite failure behavior subjected to in-plane compressive loading, Thin-Walled Struct. 157,2020, 107149.
[53] Q. Guo, Y. Zhang, D. Li, R. Guo, M. Ma, L. Chen, Effect of bias yarn on tensile fracture mechanism of multiaxial 3D angle-interlock woven composites, Thin-Walled Struct. 159,2021, 107269.
[54] Q. Guo, Y. Zhang, D. Li, Q. Lv, X. Sun, M. Ma, L. Chen, Experimental and numerical investigation of open-hole tensile properties and damage mechanisms of 3D woven composites under weft-loading, Thin-Walled Struct. 161,2021, 107455.
[55] Ahmad, Z., Thambiratnam, D.P., Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading, Comput. Struct.87(3),2009, 186-197.
[56] Shengyin Wu, Guangyao Li, Guangyong Sun, Xin Wu, Qing Li, Crashworthiness analysis and optimization of sinusoidal corrugation tube, Thin-Walled Structures, Volume 105,2016.
[57] A. Haris, H.P. Lee, V.B. Tan An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads, Def. Technol. 14 (1),2018, 12–18.
[58] D. Zhang, Q. Fei, P. Zhang, Drop weight impact behavior of honeycomb sandwich panels under a spherical impactor, Compos. Struct. 168,2017, 633–645.
[59] M. Jeddi, M. Yazdani, Dynamic compressive response of 3D GFRP composites with shear thickening fluid (STF) matrix as cushioning materials, J. Compos. Mater, 2021, 0021998320984247.
[60] F. Fabbrocino, I. Farina, M. Modano, Loading noise effects on the system identification of composite structures by dynamic tests with vibrodyne, Composites B 115,2017, 376–383.
[61] R. R. Chauhan, R. P. A. Dullens, K. P. Velikov, and D. G. A. L. Aarts. Exploring concentration, surface area, and surface chemistry effects of colloidal aggregates on fat crystal networks. RSC Adv 7 ,2017, 28780-28787.
[62] E. Aliabadian, S. Sadeghi, M. Kamkar, Z. Chen, and U. Sundararaj Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations, J. Rheol 62,2018, 1197- 1216
[63] T. J. Kang, K. H. Hong and M. R. Yoo Fiber. Polym 11,2010, 719-724.
[64] G. Bossis and J. F. Brady J. Chem Phys 91,1989, 1866-1874.