[1] Chong, K.P., Kuruppu, M.D., (1984) New specimen for fracture toughness determination of rock and other materials. Int. J. Fract.; 26:59-62.
[2] Kuruppu, M.D., (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int. J. Fract.; 86: L33-L38.
[3] ISRM commission on testing methods, (2017) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr. 10(2).
[4] ISRM Testing Commission, (1988) Suggested methods for determining the fracture toughness of rock. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts 25:71–96.
[5] Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P., Funatsu. T. (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen Rock Mech Rock Eng 47:267–74.
[6] Gogotsi, GA. (2003). Fracture toughness of ceramics and ceramic composites. Ceramics International, 29(7), 777–784.
[7] ASTM C1421-99, Standard Test Method for the Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature.
[8] G.A. Gogotsi, GA., (2002) Fracture toughness studies on ceramics and ceramic particulate composites at different temperatures, in: J.A. Salem, G.D. Quinn, M.G. Jenkins (Eds.), Fracture Resistance Testing of Monolithic and Composite Brittle Materials (ASTM STP 1409), American Society for Testing and Materials, West Conshohocken, PA, 199–212.
[9] Lubauer, J.; Belli, R.; Lorey, T.; Max, S.; Lohbauer, U.; Zorzin, J.I., (2022) A split-Chevron-Notched-Beam sandwich specimen for fracture toughness testing of bonded interfaces. J. Mech. Behav. Biomed. Mater. 131, 105236.
[10] Awaji, H.; Sakaida, Y., (1990) V-Notch Technique for Single-Edge Notched Beam and Chevron Notch Methods. J. Am. Ceram. Soc. 73, 3522–3523.
[11] Zhang, Z., (2002) An empirical relation between mode I fracture toughness and the tensile strength
of rock. Int. J. Rock Mech. Min. Sci. 39(3): 401–406.
[12] Muñoz-Ibáñez, A., Delgado-Martín, J., Costas, M., Rabuñal-Dopico, J., Alvarellos-Iglesias, J., Canal-Vila. J., (2020) Mode I fracture toughness determination in rocks using a pseudo-compact tension (pCT) test approach Rock Mech Rock Eng., 53:3267-85.
[13] Ayatollahi MR, Akbardoost J (2014) Size and geometry effects on rock fracture toughness: mode I fracture. Rock Mech Rock Eng. 47:677–687
[14] Ayatollahi MR, Moghaddam MR, Razavi SMJ, Berto F (2016) Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng Fract Mech 163:449–461.
[15] Tutluoglu, L., Keles, C., (2012) Effects of geometric factors on mode I fracture toughness for modified ring tests. Int J Rock Mech Min Sci. 51:149‐161.
[16] Ghouli, S., Bahrami, B., Ayatollahi, M.R. et al., (2021) Introduction of a Scaling Factor for Fracture Toughness Measurement of Rocks Using the Semi-circular Bend Test. Rock Mech Rock Eng 54, 4041–4058.
[17] Zhang, S., An, D., Zhang, X., Yu, B., Wang, H., (2021) Research on size effect of fracture toughness of sandstone using the center-cracked circular disc samples. Eng. Fract. Mech. 251.
[18] Wei, M-D., Dai, F., Xu, NW., Zhao, T., Liu, Y., (2017) An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks. Int J Rock Mech Min Sci. 99:28–38.
[19] Justo J, Castro J, Cicero S et al (2017) Notch effect on the fracture of several rocks: application of the theory of critical distances. Theor Appl Fract Mech 90:251–258.
[20] Bahadori, R.; Ayatollahi, M.R.; Cicero, S.; Álvarez, J.A., (2021) Geometry Effects on Mode I Brittle Fracture in VO-Notched PMMA Specimens. Polymers, 13, 3017.
[21] Zhang, S., Wang, L. & Gao, M., (2020) Experimental and Numerical Study of the Influence of Prefabricated Crack Width on the Fracture Toughness of NSCB Specimens. Rock Mech Rock Eng 53, 5133–5154.
[22] Aliha, MRM., Ayatollahi, MR., (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading-A statistical approach. Theor Appl Fract Mech 69:17–25.
[23] Fahimifar, A., Heidari Moghadam, R., (2017) An Experimental and Numerical Study on the Effect of Loading Type and Specimen Geometry on Mode-I Fracture Toughness of Rock. AUT Journal of Civil Engineering, 1(1): 45-54.
[24] Zhou, L., Zhu, ZM., Qiu, H., et al (2018) Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens. Int J Rock Mech Min Sci 112:25–34.
[25] Zhou, J., Wang, Y., Xia, Y., (2006) Mode-I fracture toughness of PMMA at high loading rate,Journal of Material Science, 41 (24), 8363-8366.
[26] Weerasooriya, T., Moy,M P., Casem, D., Cheng, M., Chen, W., (2006) Fracture toughness for PMMA as a function of loading rate.
[27] Dehghani B, Faramarzi L (2019) Experimental investigations of fracture toughness and crack initiation in marble under different freezing and thermal cyclic loading. Constr Build Mater 220:340–352.
[28] Justo, J., Castro, J., Cicero, S., (2020) Notch effect and fracture load predictions of rock beams at different temperatures using the theory of critical distances. Int. J. Rock Mech. Min. Sci., 125, 104161.
[29] Zejin, y., Zhang, C., (2019) Mode I Fracture Toughness Test and Fractal Character of Fracture Trajectory of Red Sandstone under Real-Time High Temperature, Advances in Materials Science and Engineering.
[30] Torabi, AR., Jabbari, M., Akbardoost, J., (2020) Scaling effects on notch fracture toughness of graphite specimens under mode I loading, Engineering Fracture Mechanics, 235.
[31] Zhang, N., Hedayat, A., Bolaños, HG., Tunnah, J., González, JJ., Salas Álvare, GE., Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full field displacement fields via digital image correlation, Theor Appl Fract Mech, 2021 ;11 4 :103014 .
[32] Muñoz-Ibáñez, A., Delgado-Martín, J., Juncosa-Rivera, R., (2021) Size effect and other effects on mode I fracture toughness using two testing methods Int J Rock Mech Min Sci 143C 104785.
[33] Huddhar, A., Desai, A., Sharanaprabhu, CM., Kudari, SK., Gouda, PSS., (2016) Studies on effect of pre-crack length variation on Inter-laminar fracture toughness of a Glass Epoxy laminated composite. IOP Conference Series. Materials Science and Engineering, 149: 012161.
[34] Xiao, P., Li, D., Zhao, G., Liu, M., (2021) Experimental and Numerical Analysis of Mode I Fracture Process of Rock by Semi-Circular Bend Specimen. Mathematics, 9, 1769.
[35] Torabi, A.R., Saboori, B., Keshavarz S., Ayatollahi, M.R., (2018) Brittle failure of PMMA in the presence of blunt V-notches under combined tension-tear loading: Experiments and stress-based theories, Polymer Testing, 72, 94-109.
[36] Sanchez, F.J., Elices, M., Valiente, A., (2001) Cracking in PMMA containing U-shaped notches. Fatigue & Fracture of Engineering Materials & Structures. 23, 795-803.
[37] ASTM, (2012) E399-12: Standard test method for linear-elastic plane strain fracture toughness of metallic materials. West Conshohocken, PA: ASTM International.
[38] Backers, T., Stephansson, O., (2012) ISRM suggested method for the determination of mode II fracture toughness. Rock Mechanics and Rock Engineering 45:1011–1022.
[39] Backers, T., Fardin, N., Dresen, G., Stephansson, O., (2003) Effect of loading rate on Mode I fracture toughness, roughness and micromechanics of sandstone. International Journal of Rock Mechanics and Mining Sciences 40:425–433.
[40] Huang, X., Liu, Z., & Xie, H., )2013) Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 26(6), 570-583.
[41] Yates, J.R., Zanganeh, M., Tai, Y.H., )2010) Quantifying crack tip displacement fields with DIC Engineering Fracture Mechanics, 77, 2063–2076.
[42] Zhang, R., He, L., (2012) Measurement of mixed-mode stress intensity factors using digital image correlation method. Optics and Lasers in Engineering, 50, 1001–1007.
[43] Chang, S.H., Lee, C.I., Jeon, S. 2002. Measurement of rock fracture toughness under mode I and II and mixed mode conditions by using disc type specimens. Eng. Geol. 66, 79-97.
[44] Zhang J, Little DN, Grajales J, You T, Kim Y-R (2017) Use of Semicircular Bending Test and Cohesive Zone Modeling to Evaluate Fracture Resistance of Stabilized Soils. Transportation Research Record: Journal of the Transportation Research Board 2657:67–77.
[45] Ayatollahi, MR., Saboori, B., (2015) A new fixture for fracture tests under mixed mode I/III loading Eur J Mech A/Solids 51 67-76.