1- Sobkowiak M, Rebis T, Milczarek G. Electrocatalytic sensing of poly-nitroaromatic compounds on multiwalled carbon nanotubes modified with alkoxysulfonated derivative of PEDOT. Materials Chemistry and Physics. 2017; 186:108-14.
2- da Silva JP, Soares BG, Livi S, Barra GM. Phosphonium–based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness. Materials Chemistry and Physics. 2017; 189:162-8
1. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids. 2000;48(1):175-209.
2. Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics. 2005;40(2-3):395-409.
3. Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of elasticity. 2007;88(2):151-84.
4. Mitchell JA. A nonlocal, ordinary, state-based plasticity model for peridynamics. UNT Digital Library: Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States); 2011.
5. Mitchell JA. A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA …; 2011.
6. Nikabdullah N, Azizi M, Alebrahim R, Singh S. The application of peridynamic method on prediction of viscoelastic materials behaviour. AIP conference proceedings. 2014;1602(1):357-63.
7. Bang D. Peridynamic modeling of hyperelastic materials [text; Electronic Dissertation]: The University of Arizona; 2016.
8. Xu L, He X, Chen W, Li S, Wang G, editors. Reformulating hyperelastic materials with peridynamic modeling. Computer Graphics Forum; 2018: Wiley Online Library.
9. Silling SA. Introduction to peridynamics. Handbook of peridynamic modeling: Chapman and Hall/CRC; 2016. p. 63-98.
10. Diehl P, Prudhomme S, Lévesque M. A review of benchmark experiments for the validation of peridynamics models. Journal of Peridynamics and Nonlocal Modeling. 2019;1(1):14-35.
11. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures. 2005;83(17-18):1526-35.
12. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications. 2008;179(11):777-83.
13. Parks ML, Seleson P, Plimpton SJ, Silling SA, Lehoucq RB. Peridynamics with lammps: a user guide, v0. 3beta. Sandia Report (2011–8253). 2011;3532.
14. Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture. 2010;162(1):229-44.
15. Ha YD, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics. 2011;78(6):1156-68.
16. Agwai A, Guven I, Madenci E. Predicting crack propagation with peridynamics: a comparative study. International journal of fracture. 2011;171(1):65-78.
17. Silling SA, Weckner O, Askari E, Bobaru F. Crack nucleation in a peridynamic solid. International Journal of Fracture. 2010;162(1):219-27.
18. Zhou X-P, Gu X-B, Wang Y-T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks. international journal of Rock Mechanics and Mining Sciences. 2015; 80:241-54.
19. Zhao J, Tang H, Xue S. Peridynamics versus XFEM: a comparative study for quasi-static crack problems. Frontiers of structural and civil engineering. 2018;12(4):548-57.
20. Shafiei A. Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics. Frontiers of Structural and Civil Engineering. 2018;12(4):527-35.
21. Huang X, Bie Z, Wang L, Jin Y, Liu X, Su G, He X. Finite element method of bond-based peridynamics and its ABAQUS implementation. Engineering Fracture Mechanics. 2019; 206:408-26.
22. Basoglu MF, Zerin Z, Kefal A, Oterkus E. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Computational Materials Science. 2019; 162:33-46.
23. Wang Y, Zhou X, Kou M. Numerical studies on thermal shock crack branching instability in brittle solids. Engineering Fracture Mechanics. 2018; 204:157-84.
24. Mehrmashhadi J, Bahadori M, Bobaru F. On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Engineering Fracture Mechanics. 2020; 240:107355.
25. Anbarlooie B, Hosseini-Toudeshky H. Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure. International Journal of Mechanical Sciences. 2019; 153:64-74.
26. Karpenko O, Oterkus S, Oterkus E. Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. Journal of Peridynamics and Nonlocal Modeling. 2020;2(3):289-316.
27. Isiet M, Mišković I, Mišković S. Review of peridynamic modelling of material failure and damage due to impact. International Journal of Impact Engineering. 2021; 147:103740.
28. Bobaru F, Ha YD, Hu W. Damage progression from impact in layered glass modeled with peridynamics. Central European Journal of Engineering. 2012;2(4):551-61.
29. Sun C, Huang Z. Peridynamic simulation to impacting damage in composite laminate. Composite Structures. 2016; 138:335-41.
30. Liu N, Liu D, Zhou W. Peridynamic modelling of impact damage in three-point bending beam with offset notch. Applied Mathematics and Mechanics. 2017;38(1):99-110.
31. Akbari M, Kazemi S. Peridynamic Analysis of Cracked Beam Under Impact. Journal of Mechanics. 2020;36(4):451-63.
32. Agwai A, Guven I, Madenci E. Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory. Microelectronics Reliability. 2011;51(12):2298-305.
33. Kilic B, Agwai A, Madenci E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Structures. 2009;90(2):141-51.
34. Zhou W, Liu D, Liu N. Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model. Engineering Fracture Mechanics. 2017; 178:60-76.
35. Hu W, Ha YD, Bobaru F. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering. 2012; 217:247-61.
36. Ghajari M, Iannucci L, Curtis P. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Computer Methods in Applied Mechanics and Engineering. 2014; 276:431-52.
37. Taştan A, Yolum U, Güler MA, Zaccariotto M, Galvanetto U. A 2D peridynamic model for failure analysis of orthotropic thin plates due to bending. Procedia Structural Integrity. 2016; 2:261-8.
38. Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A. Peridynamic modeling of composite laminates under explosive loading. Composite Structures. 2016; 144:14-23.
39. Cheng Z, Zhang G, Wang Y, Bobaru F. A peridynamic model for dynamic fracture in functionally graded materials. Composite Structures. 2015; 133:529-46.
40. Cheng Z, Liu Y, Zhao J, Feng H, Wu Y. Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Engineering Fracture Mechanics. 2018; 191:13-32.
41. Madenci E, Yaghoobi A, Barut A and Phan N. Peridynamics for failure prediction in variable angle tow composites. Archive of Applied Mechanics 2022: 1-15.
42. Shang S, Qin X, Li H and Cao X. An application of non-ordinary state-based peridynamics theory in cutting process modelling of unidirectional carbon fiber reinforced polymer material. Composite Structures 2019; 226: 111194.
43. Oterkus E, Madenci E, Weckner O, et al. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850.