مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل و مدل سازی آسیب و رشد ترک در قطعه کار کامپوزیتی تحت فرآیند ماشینکاری با استفاده از تئوری پری داینامیک مبتنی بر پیوند

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه صنعتی شاهرود
چکیده
تحلیل و مدل­سازی نحوه رشد ترک و آسیب در اجسام و سازه ها یکی از موارد مهم برای طراحی روش­های جلوگیری رشد ترک و یا توقف آن جهت جلوگیری از وقوع شکست ناگهانی و در نتیجه افزایش عمر سازه­ها می­باشد. تا کنون تحقیقات گسترده­ای در زمینه مدل­سازی شکست، رشد ترک و آسیب در اجسام و سازه­ها، توسط پژوهشگران صورت گرفته است. با وجود این پژوهش­ها هنوز مشکلات زیادی در زمینه مدل­سازی رشد ترک و آسیب در اجسامی که دارای نقاط منفرد و ناپیوستگی­ها می­باشند، وجود دارد. در سال­های اخیر نظریه جدیدی تحت عنوان تئوری پری‌داینامیک برای مدل سازی و تحلیل چنین مسائلی ارائه شده است. چارچوب فرمول­بندی تئوری پری­داینامیک بر اساس معادلات انتگرالی می باشد. همچنین نقاط منفرد، ناپیوستگی­ها و آسیب در جسم و مدل­سازی آن­ها به عنوان نوعی دیگر از تغییر شکل و جزیی از معادلات ساختاری این تئوری می باشند. در نتیجه می­توان از تئوری پری­داینامیک بطور مستقیم و بدون نیاز به روابط تکمیلی جهت مدل­سازی رشد ترک در مسائلی که شامل نقاط منفرد و ناپیوستگی ها هستند، استفاده کرد. در این پژوهش به ارزیابی تئوری پری­داینامیک مبتنی بر پیوند در تحلیل و مدل­سازی آسیب در قطعه­کار کامپوزیتی پلیمری تک­لایه تقویت شده با الیاف تک­جهته کربن پرداخته شده­است و نتایج حاصل از این پژوهش با نتایج منابع در دسترس مورد مقایسه قرار گرفته شده است. با توجه به نتایج حاصل از این پژوهش می­توان بیان کرد که تئوری پری­داینامیک بخوبی و بدون تغییر درمعیار و بدون نیاز به روابط تکمیلی قادر به تحلیل و مدل­سازی رشد ترک، آسیب و شکست در قطعه­کار کامپوزیتی پلیمری تقویت شده با الیاف کربن می­باشد. همچنین می­توان بیان کرد که جهت الیاف در قطعه­کار کامپوزیتی موردنظر تاثیر بسزایی بر آسیب و رشد ترک ایجاد شده در آن و نیروی وارد بر آن از طرف ابزار طی فرآیند ماشین­کاری دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis and Modeling of Damage and Crack Growth in Composite Workpieces under Machining Process using the Bond-Based Peridynamic Theory

نویسندگان English

Reza Rashmehkarim
Mohammad Jafari
Mahdi Heidari
چکیده English

Analyzing and modeling damage and crack growth in bodies and structures is one of the important issues in designing methods to prevent crack growth or stop it in order to avoid sudden fracture and increase the lifetime of structures. Extensive research has been performed in the field of modeling fracture, crack growth, and damage in bodies and structures. However, there are still many problems in modeling crack growth and damage in bodies with points of singularity and discontinuities. In recent years, a new theory called peridynamic has been proposed to model and analyze such problems. The formulation framework of peridynamic theory is based on integral equations. In addition, points of singularity and discontinuities and damage in the body and modeling them are another type of deformation and part of the structural equations of this theory. As a result, the peridynamic theory is used directly, without the need for additional relations to model crack growth in problems involving points of singularity and discontinuities. In this paper, a bond-based peridynamic modeling for unidirectional carbon fiber reinforced polymer material(UDCFRP) orthogonal cutting process is proposed, and the corresponding composite material bond failure criterion is also investigated for better revealing the machining mechanism of UD-CFRP machining. From comparing between simulation and experimental results, it can be indicated that the peridynamic modeling is capable for predicting the chip formation and surface crack and damages in UD-CFRP machining.

کلیدواژه‌ها English

Surface damage
Crack
CFRP Composite
Peridynamic Theory
1- Sobkowiak M, Rebis T, Milczarek G. Electrocatalytic sensing of poly-nitroaromatic compounds on multiwalled carbon nanotubes modified with alkoxysulfonated derivative of PEDOT. Materials Chemistry and Physics. 2017; 186:108-14.
2- da Silva JP, Soares BG, Livi S, Barra GM. Phosphonium–based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness. Materials Chemistry and Physics. 2017; 189:162-8
1. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids. 2000;48(1):175-209.
2. Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics. 2005;40(2-3):395-409.
3. Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of elasticity. 2007;88(2):151-84.
4. Mitchell JA. A nonlocal, ordinary, state-based plasticity model for peridynamics. UNT Digital Library: Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States); 2011.
5. Mitchell JA. A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA …; 2011.
6. Nikabdullah N, Azizi M, Alebrahim R, Singh S. The application of peridynamic method on prediction of viscoelastic materials behaviour. AIP conference proceedings. 2014;1602(1):357-63.
7. Bang D. Peridynamic modeling of hyperelastic materials [text; Electronic Dissertation]: The University of Arizona; 2016.
8. Xu L, He X, Chen W, Li S, Wang G, editors. Reformulating hyperelastic materials with peridynamic modeling. Computer Graphics Forum; 2018: Wiley Online Library.
9. Silling SA. Introduction to peridynamics. Handbook of peridynamic modeling: Chapman and Hall/CRC; 2016. p. 63-98.
10. Diehl P, Prudhomme S, Lévesque M. A review of benchmark experiments for the validation of peridynamics models. Journal of Peridynamics and Nonlocal Modeling. 2019;1(1):14-35.
11. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures. 2005;83(17-18):1526-35.
12. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications. 2008;179(11):777-83.
13. Parks ML, Seleson P, Plimpton SJ, Silling SA, Lehoucq RB. Peridynamics with lammps: a user guide, v0. 3beta. Sandia Report (2011–8253). 2011;3532.
14. Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture. 2010;162(1):229-44.
15. Ha YD, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics. 2011;78(6):1156-68.
16. Agwai A, Guven I, Madenci E. Predicting crack propagation with peridynamics: a comparative study. International journal of fracture. 2011;171(1):65-78.
17. Silling SA, Weckner O, Askari E, Bobaru F. Crack nucleation in a peridynamic solid. International Journal of Fracture. 2010;162(1):219-27.
18. Zhou X-P, Gu X-B, Wang Y-T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks. international journal of Rock Mechanics and Mining Sciences. 2015; 80:241-54.
19. Zhao J, Tang H, Xue S. Peridynamics versus XFEM: a comparative study for quasi-static crack problems. Frontiers of structural and civil engineering. 2018;12(4):548-57.
20. Shafiei A. Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics. Frontiers of Structural and Civil Engineering. 2018;12(4):527-35.
21. Huang X, Bie Z, Wang L, Jin Y, Liu X, Su G, He X. Finite element method of bond-based peridynamics and its ABAQUS implementation. Engineering Fracture Mechanics. 2019; 206:408-26.
22. Basoglu MF, Zerin Z, Kefal A, Oterkus E. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Computational Materials Science. 2019; 162:33-46.
23. Wang Y, Zhou X, Kou M. Numerical studies on thermal shock crack branching instability in brittle solids. Engineering Fracture Mechanics. 2018; 204:157-84.
24. Mehrmashhadi J, Bahadori M, Bobaru F. On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Engineering Fracture Mechanics. 2020; 240:107355.
25. Anbarlooie B, Hosseini-Toudeshky H. Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure. International Journal of Mechanical Sciences. 2019; 153:64-74.
26. Karpenko O, Oterkus S, Oterkus E. Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. Journal of Peridynamics and Nonlocal Modeling. 2020;2(3):289-316.
27. Isiet M, Mišković I, Mišković S. Review of peridynamic modelling of material failure and damage due to impact. International Journal of Impact Engineering. 2021; 147:103740.
28. Bobaru F, Ha YD, Hu W. Damage progression from impact in layered glass modeled with peridynamics. Central European Journal of Engineering. 2012;2(4):551-61.
29. Sun C, Huang Z. Peridynamic simulation to impacting damage in composite laminate. Composite Structures. 2016; 138:335-41.
30. Liu N, Liu D, Zhou W. Peridynamic modelling of impact damage in three-point bending beam with offset notch. Applied Mathematics and Mechanics. 2017;38(1):99-110.
31. Akbari M, Kazemi S. Peridynamic Analysis of Cracked Beam Under Impact. Journal of Mechanics. 2020;36(4):451-63.
32. Agwai A, Guven I, Madenci E. Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory. Microelectronics Reliability. 2011;51(12):2298-305.
33. Kilic B, Agwai A, Madenci E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Composite Structures. 2009;90(2):141-51.
34. Zhou W, Liu D, Liu N. Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model. Engineering Fracture Mechanics. 2017; 178:60-76.
35. Hu W, Ha YD, Bobaru F. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering. 2012; 217:247-61.
36. Ghajari M, Iannucci L, Curtis P. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Computer Methods in Applied Mechanics and Engineering. 2014; 276:431-52.
37. Taştan A, Yolum U, Güler MA, Zaccariotto M, Galvanetto U. A 2D peridynamic model for failure analysis of orthotropic thin plates due to bending. Procedia Structural Integrity. 2016; 2:261-8.
38. Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A. Peridynamic modeling of composite laminates under explosive loading. Composite Structures. 2016; 144:14-23.
39. Cheng Z, Zhang G, Wang Y, Bobaru F. A peridynamic model for dynamic fracture in functionally graded materials. Composite Structures. 2015; 133:529-46.
40. Cheng Z, Liu Y, Zhao J, Feng H, Wu Y. Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Engineering Fracture Mechanics. 2018; 191:13-32.
41. Madenci E, Yaghoobi A, Barut A and Phan N. Peridynamics for failure prediction in variable angle tow composites. Archive of Applied Mechanics 2022: 1-15.
42. Shang S, Qin X, Li H and Cao X. An application of non-ordinary state-based peridynamics theory in cutting process modelling of unidirectional carbon fiber reinforced polymer material. Composite Structures 2019; 226: 111194.
43. Oterkus E, Madenci E, Weckner O, et al. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850.