مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

استرداد: مقایسه یکپارچگی سطح ماشینکاری شده در تراشکاری فولاد ضدزنگ 304L تحت حالات روانکاری کمینه (MQL) و کرایوژنیک (CO2)

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تهران مرکزی
چکیده
در تحقیق جاری تاثیر پارامترهای عمق و سرعت برشی بر توپوگرافی ‌سطح ماشینکاری، تغییرات ریزسختی و ریزساختاری در سطح مقطع عرضی قطعات تراشکاری شده تحت حالات خشک، تر، روانکاری کمینه (MQL) و خنک­کاری کرایوژنیک (CO2)، روی فولاد ضدزنگ 304 L بررسی شده است. منشاء اصلی عیوب در توپوگرافی سطوح ماشینکاری، تشکیل لبه­ انباشته روی سطح ابزار و جدا شدن مجدد آن بود، همچنین افزایش سرعت برشی باعث ناپایداری در تشکیل لبه­ انباشته و در نتیجه کاهش حجم توده لبه انباشته­ می­گردد. در بحث بهبود توپوگرافی سطح ماشینکاری شده، به ترتیب اولویت، تاثیر روش­های MQL، تر و کرایوژنیک، نسبت به روش خشک، از بیشترین تا کمترین بوده است. برش عرضی از نمونه­های ماشینکاری شده تهیه و مشاهده گردید که مقدار سختی زیرسطحی نمونه­ها با فاصله گرفتن از سطح تا حداکثر 34% کاهش می­یابد و به سختی ماده پایه قطعه­کار نزدیک می­شود. میزان سختی در سطح مقطع عرضی نمونه­های ماشینکاری شده، ارتباط مستقیم با کارسختی به وجود آمده بر اثر تغییر شکل پلاستیک شدید روی سطح قطعه دارد. با افزایش سرعت برشی، شدت تغییر شکل پلاستیک در قطعه نیز افزایش یافته و میزان سختی در زیر سطح بیشتر می­شود. فرآیندهای خنک­کاری و روانکاری مختلف تاثیر مستقیم بر ضخامت لایه تغییر شکل یافته ریزساختاری دارد. تحت بیشترین مقدار سرعت برشی استفاده شده در تحقیق جاری، حداکثر کاهش ضخامت لایه تغییر شکل یافته ریزساختاری در حالات کرایوژنیک و روانکاری کمینه نسبت به حالت خشک، به ترتیب برابر با 62% و 28% بوده است
کلیدواژه‌ها

موضوعات


عنوان مقاله English

RETRACTED: Comparison of Machined Surface Integrity in 304L Stainless Steel Turning under Minimum Quantity Lubrication (MQL) and Cryogenic (CO2) Conditions

نویسندگان English

Saeed Dinarvand
Behzad Jabbaripour
Associate professor, Department of Mechanical Engineering, Engineering Faculty, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده English

In the current research, the effect of cutting depth and speed on surface topography, microhardness and microstructural changes in cross-sectional surface of turned parts under dry, wet, MQL and cryogenic cooling (CO2) conditions, on 304L stainless steel has been investigated. The main origin of surface topography defects was the formation of built up edge (BUE) on the cutting tool and its removal again. Also, the increase in cutting speed causes instability in the formation of BUE, as a result the volume of accumulated BUE decreases. Considering the improvement of surafce topography, in the order of priority, the efficiency of MQL, wet and cryogenic methods has been from the highest to the lowest compared to the dry method. the cross section of machined samples were prepared and it was observed that subsurface hardness of the samples decreases with the distance from the surface up to 34% and approaches the hardness of the bulk material. The hardness value in cross section of machined samples is directly related to the work hardening caused by severe plastic deformation on machined surface.With increase of cutting speed, the intensity of plastic deformation increases and the hardness under the surface increases. Different cooling and lubrication processes have a direct effect on thickness of the microstructural deformed layer. Under the highest value of cutting speed used in this research, the maximum reduction in thickness of the deformed layer of the microstructure in cryogenic and MQL conditions compared to the dry mode was equal to 62% and 28%, respectively

کلیدواژه‌ها English

304L Stainless Steel
Turning
Surface integrity
minimum quantity lubrication
Cryogenic
[1] Kaviani nezhad F. Stainless and heat resistance steels. Abgin Rayan publication. 2007; 19-50 (In Persian).
[2] Endrino J.L, Fox-Rabinovich G.S, Gey C. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surface and Coatings Technology. 2006; 200 (24): 6840–6845.
[3] Yildiz Y, Nalbant M .A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture. 2008; 48 (9): 947–964.
[4] Busch K, Hochmuth C, Pause B, Stoll A, Wertheim R. Investigation of cooling and lubrication strategies for machining high-temperature alloys. Procedia CIRP. 2016; 41: 835 – 840.
[5] Davim J.P. Surface Integrity in Machining. Springer. 2010; 8-45.
[6] Maruda R, Krolczyk G, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture. 2016; 100: 81-92.
[7] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Faraji H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. Manufacturing Processes. 2013; 15 (1): 56-68.
[8] Jabbaripour B, Sadeghi M.H, Shabgard M.R, Shajari Sh, Hassanpour H. Investigating the Effects of Powder Mixed Electrical Discharge Machining on the Surface Quality of γ–TiAl Intermetallic. Advanced Materials Research. 2012; 488: 396-401.
[9] Molla Ramezani N, Rasti A, Sadeghi M.H, Jabbaripour B, Rezaei Hajideh M. Experimental study of tool wear and surface roughness on high speed helical milling in D2 steel. Modares Mechanical Engineering. Proceedings of the Advanced Machining and Machine Tools Conference. 2015; 15 (13): 198-202 (in Persian).
[10] Cordes S, Hübner F, Schaarschmidt T. Next generation high performance cutting by use of carbon dioxide as cryogenics. Procedia CIRP. 2014; 14: 401 – 405.
[11] Park K.H, Yang G.D, Suhaimi M.A, Lee D.Y, Kim T.G, Kim D.W, Lee S.W. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4. Journal of Mechanical Science and Technology. 2015; 29: 5121-5126.
[12] Shokrani A, Dhokia V, Newman S.T. Cryogenic high speed machining of cobalt chromium alloy. Procedia CIRP. 2016; 46 : 404 – 407.
[13] Khanna N, Shah P, Chetan H. Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during machining of 15-5-PH SS alloy. Tribology International. 2020; 146: 186-196.
[14] Kaynak Y. Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. The International Journal of Advanced Manufacturing Technology. 2014; 72 (5-8): 919-933.
[15] Jabbaripour B, Souzani Masouleh H, Lavaei Salmasi M.H. Comparison of surface integrity, tool wear and chip morphology in CO2 cryogenic and dry milling of 304 stainless steel, Surface Topography: Metrology and Properties. 2021; 9 (1): 015032.
[16] Azami A, Salahshournejad Z, Shakouri E, Sharifi A.R, Saraeian P. Influence of nano- minimum quantity lubrication with MoS2 and CuO nanoparticles on cutting forces and surface roughness during grinding of AISI D2 steel. Jouranl of manufacturing processes. 2023; 87: 209-220.
[17] Danish M, Ginta T.L, Habib K, Carou D, Rani A.M.A, Saha B.B. Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. International Jouranl of Advanced Manufacturing Thechnology. 2017; 91: 2855- 2868.
[18] Bordin A, Sartori S, Bruschi S, Ghiotti A. Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing. Journal of cleaner production. 2017; 142 (4): 4142-4151.
[19] Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining of nickel-based super alloys. Interanational Journal of Machine Tools and Manufacture. 2016; 100: 25-54.
[20] Thakur D.G, Ramamoorthy B, Vijayaraghavan L. A study on the surface integrity aspects of superalloy Inconel 718 under minimum quantity lubrication in high speed turning. International Journal of Materials and Structural Integrity. 2011; 5 (1): 36-45.
[21] Rachmat H, Mahalil K, Rahim E.A, Mohid Z. Comparison between Dry, MQL and Cryogenic Cooling Technique on Surface Integrity of Burnished Surface. International Journal of Integrated Engineering. 2019; 11 (5): 35-41.
[22] Sharma J, Sidhu B.S. Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. Journal of Cleaner Production. 2014; 66: 619-623.
[23] Zhao W, Ren F, Iqbal A, Gong L, He N, Xu Q. Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4V titanium alloy. The International Journal of Advanced Manufacturing Technology. 2020; 106 (3): 1497-1508