Young, D.M., Iterative solution of large linear systems. Computer Science and Applied Mathematics. 1971, San Diego, CA: Academic Press.
Saad, Y., Iterative Methods for Sparse Linear Systems: Second Edition. 2003: Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104).
Świrydowicz, K., et al., Linear solvers for power grid optimization problems: A review of GPU-accelerated linear solvers. Parallel Computing, 2022. 111: p. 102870.
Cotronis, Y., et al., A comparison of CPU and GPU implementations for solving the Convection Diffusion equation using the local Modified SOR method. Parallel Computing, 2014. 40(7): p. 173-185.
Taghavi, S.M.H., P. Akbarzadeh, and H. Mahmoodi Darian, SADI approach programming on GPU: convective heat transfer of nanofluids flow inside a wavy channel. Journal of Thermal Analysis and Calorimetry, 2020.
Foadaddini, A., et al., An efficient GPU-based fractional-step domain decomposition scheme for the reaction–diffusion equation. Computational and Applied Mathematics, 2020. 39(4): p. 305.
Souri, M., P. Akbarzadeh, and H.M. Darian, Parallel Thomas approach development for solving tridiagonal systems in GPU programming − steady and unsteady flow simulation. Mechanics & Industry, 2020. 21(3): p. 303.
Mahmoodi Darian, H. and V. Esfahanian, Assessment of WENO schemes for multi-dimensional Euler equations using GPU. International Journal for Numerical Methods in Fluids, 2014. 76(12): p. 961-981.
Mahmoodi Darian, H., Accelerating high-order WENO schemes using two heterogeneous GPUs. Journal of Computational Applied Mechanics, 2017. 48(2): p. 161-170.
Esfahanian, V., H.M. Darian, and S.M. Iman Gohari, Assessment of WENO schemes for numerical simulation of some hyperbolic equations using GPU. Computers and Fluids, 2013. 80(1): p. 260-268.
Baghapour, B., et al., A discontinuous Galerkin method with block cyclic reduction solver for simulating compressible flows on GPUs. International Journal of Computer Mathematics, 2015. 92(1): p. 110-131.
Di, P., et al., Parallelizing SOR for GPGPUs using alternate loop tiling. Parallel Computing, 2012. 38(6): p. 310-328.
Bozorgmehr, B., et al., Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black successive over relaxation wind-field solver. Environmental Modelling & Software, 2021. 137: p. 104958.
مسیبی, ف., پیاده سازی روش گرادیان مزدوج با کارایی بالا به کمک زبان آزاد محاسباتی روی پردازنده های گرافیکی. روشهای عددی در مهندسی, 2013. 33(1): p. 1-13.
Helfenstein, R. and J. Koko, Parallel preconditioned conjugate gradient algorithm on GPU. Journal of Computational and Applied Mathematics, 2012. 236(15): p. 3584-3590.
Mittal, S., A study of successive over-relaxation method parallelisation over modern HPC languages. International Journal of High Performance Computing and Networking, 2014. 7(4): p. 292-298.
Uh Zapata, M., D. Pham Van Bang, and K.D. Nguyen, Parallel simulations for a 2D x/z two-phase flow fluid-solid particle model. Computers & Fluids, 2018. 173: p. 103-110.
Xie, D., A New Block Parallel SOR Method and Its Analysis. SIAM Journal on Scientific Computing, 2006. 27(5): p. 1513-1533.
Hoffmann, K.A. and S.T. Chiang, Computational Fluid Dynamics. 2000: Engineering Education System.
Kuo, C.C.J. and T.F. Chan, Two-Color Fourier Analysis of Iterative Algorithms for Elliptic Problems with Red/Black Ordering. SIAM Journal on Scientific and Statistical Computing, 1990. 11(4): p. 767-793.
Leveque, R.J. and L.N. Trefethen, Fourier Analysis of the SOR Iteration. IMA Journal of Numerical Analysis, 1988. 8(3): p. 273-279.
Yang, S. and M.K. Gobbert, The optimal relaxation parameter for the SOR method applied to the Poisson equation in any space dimensions. Applied Mathematics Letters, 2009. 22(3): p. 325-331.