مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی و تحلیلی رفتار رهایش تنش سوپر آلیاژ (IN718) ساخته شده به روش ذوب لیزر انتخابی تحت کرنش های اولیه متغیر

نوع مقاله : نامه به سردبیر

نویسندگان
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
در این مقاله با انجام عملیات حرارتی در قطعات با جنس سوپر آلیاژ IN718 که به روش ساخت افزایشی تولید شده­ اند، هدف بررسی تجربی و تحلیلی رفتار رها سازی تنش می­ باشد. نمونه ­های آزمایش از روش ذوب لیزر انتخابی ساخته شده و پس از عملیات حرارتی همگن­سازی و انحلالی، با اعمال کرنش اولیه فشاری به میزان 1/1% و 2/1% در دمای 650 درجه سانتیگراد به مدت 8 ساعت تحت عملیات رهایش تنش قرار گرفتند. بمنظور بررسی اثر تغییرات کرنش بر میزان رهایش تنش، نمودار حد رهایش تنش که برای کرنش­ های 1/1% و 2/1% به ترتیب میزان 119/55 و 514/35 مگا پاسکال می­ باشد نشان می ­دهد حد رهایش تنش با افزایش کرنش اولیه افزایش می­ یابد. همچنین با بررسی نمودارهای رهایش تنش در قطعات آزمایش تجربی مشخص شد که میزان و شیب منحنی رهایش در نمونه با درصد کرنش 1/2 بیشتر می­ باشد. در بخش تحلیلی از معادله ساختاری خزش جهت بررسی رفتار رهایش تنش استفاده شد که با بررسی نمودارهای مقایسه ­ای ارائه شده، با ثبت میزان خطای 2/17% و 3/85% به ترتیب برای کرنش­های 1/1% و 2/1%، نتیجه مقایسه حاکی از تطابق خوب نتایج تحلیلی با نمودارهای تجربی می ­باشد.

موضوعات


عنوان مقاله English

Experimental and Analytical Investigation on Stress Relaxation Behavior of IN718 Superalloy Made by Selective Laser Melting Method Subjected to Variable Initial Strains

نویسندگان English

Soheil Nakhodchi
Shahryar Alikarami
Department of Mechanical Engineering, Khajeh Nasir Toosi University of Technology
چکیده English

In this paper, by performing heat treatment on IN718 superalloy specimens that are manufactured by additive manufacturing method, the purpose is to investigate the experimental and analytical behavior of stress relaxation. The 3D printed specimens were made by the selective laser melting (SLM) method and after homogenization and solution heat treatment; they were subjected to stress relaxation at the temperature of 650 °C with an initial strain of 1.1% and 2.1% for 8 hours. Due to investigate the effect of strain changes on the stress relaxation, the stress relaxation limit diagram, which is 119.55 and 514.35 MPa for strains of 1.1% and 2.1%, respectively, shows that the stress relaxation limit increases with the increase of the initial strain. Furthermore, by examining the stress relaxation behavior in the experimental specimens, it was found that the amount and slope of the relaxation curve is higher in the specimen with a strain of 2.1%. In the analytical study, the creep constitute equations were also used to investigate the stress relaxation behavior, which by checking the presented comparative curves, by recording the error amount of 2.17% and 3.85% for the strains of 1.1% and 2.1%, respectively, the result of the comparison indicates a good agreement between the analytical results and the experimental curves.

کلیدواژه‌ها English

Inconel 718 Superalloy
Additive Manufacturing
Stress relaxation
Heat Treatments
1. Hakeem AS, Patel F, Minhas N, Malkawi A, Aleid Z, Ehsan MA, et al. Comparative evaluation of thermal and mechanical properties of nickel alloy 718 prepared using selective laser melting, spark plasma sintering, and casting methods. Journal of Materials Research and Technology. 2021;12:870-81.
2. Zhu J, Yuan W. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy. Journal of Alloys and Compounds. 2023;939:168707.
3. Zhang S, Wang L, Lin X, Yang H, Huang W. The formation and dissolution mechanisms of Laves phase in Inconel 718 fabricated by selective laser melting compared to directed energy deposition and cast. Composites Part B: Engineering. 2022;239:109994.
4. Schafrik R, Sprague R. Saga of gas turbine materials: part II of this four-part series on gas turbine materials development covers vacuum arc remelting, early superalloys, and titanium processing. Advanced materials & processes. 2004;162(4):27-31.
5. Petkov VI. Alloy 718 manufactured by AM selective laser melting: evaluation of microstructure and weldability. 2018.
6. Segerstark A. Laser Metal Deposition using Alloy 718 Powder: Influence of Process Parameters on Material Characteristics: University West; 2017.
7. Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 2015;639:647-55.
8. Schaak C, Tillmann W, Schaper M, Aydinöz ME. Process gas infiltration in Inconel 718 samples during SLM processing. RTeJournal-Fachforum für Rapid Technologie. 2016;2016(1).
9. Wang X, Keya T, Chou K. Build height effect on the Inconel 718 parts fabricated by selective laser melting. Procedia Manufacturing. 2016;5:1006-17.
10. Konečná R, Kunz L, Nicoletto G, Bača A. Long fatigue crack growth in Inconel 718 produced by selective laser melting. International Journal of Fatigue. 2016;92:499-506.
11. Khorram A, Davodi Jamaloei A, Jafari A, Moradi M. Investigation on the effect of bonding time on microstructure and mechanical properties of transient liquid phase bonding between Inconel 718 and Inconel 600. Modares Mechanical Engineering. 2017;17(6):101-7.
12. Wang X, Gong X, Chou K, editors. Review on powder-bed laser additive manufacturing of Inconel 718 parts. ASME 2015 International Manufacturing Science and Engineering Conference; 2015: American Society of Mechanical Engineers Digital Collection.
13. Kuo Y-L, Horikawa S, Kakehi K. The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing. Materials & Design. 2017;116:411-8.
14. Popovich V, Borisov E, Heurtebise V, Riemslag T, Popovich A, Sufiiarov VS, editors. Creep and thermomechanical fatigue of functionally graded Inconel 718 produced by additive manufacturing. TMS Annual Meeting & Exhibition; 2018: Springer.
15. Marchese G, Bassini E, Calandri M, Ambrosio EP, Calignano F, Lorusso M, et al. Microstructural investigation of as-fabricated and heat-treated Inconel 625 and Inconel 718 fabricated by direct metal laser sintering: Contribution of Politecnico di Torino and Istituto Italiano di Tecnologia (IIT) di Torino. Metal Powder Report. 2016;71(4):273-8.
16. Tiparti D, Wessman A, Cormier J, Tin S. Comparison of the stress relaxation and creep behavior of conventionally forged and additively manufactured René 65. Journal of Materials Science. 2023;58(13):5951-69.
17. Calvo J, Shu SY, Cabrera JM, editors. Characterization of precipitation kinetics of Inconel 718 superalloy by the stress relaxation technique. Materials Science Forum; 2012: Trans Tech Publ.
18. Jiang H, Yang J, Dong J, Zhang M, Yao Z, Xie X, editors. Stress Relaxation Behavior Comparison of Typical Nickel-Base Superalloys for Fasteners. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications; 2018: Springer.
19. Wang Y, Dong J, Zhang M, Yao Z. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys. Materials Science and Engineering: A. 2016;678:10-22.
20. Bapokutty O, Sajun Z, Syarif J. Stress relaxation behavior of heat treated Inconel 718. Journal of Applied Sciences(Faisalabad). 2012;12(9):870-5.
21. Shen W, Zhang C, Zhang L, Yang Y, Zhu Z. Stress Relaxation Behaviour and Creep Constitutive Equations of SA302Gr.C Low-Alloy Steel. High Temperature Materials and Processes. 2018;37(9-10):857.
22. Rahimi S, King M, Dumont C. Stress relaxation behaviour in IN718 nickel based superalloy during ageing heat treatments. Materials Science and Engineering: A. 2017;708:563-73.
23. Balbaa M, Mekhiel S, Elbestawi M, McIsaac J. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Materials & Design. 2020;193:108818.
24. Noura. Inconel 718 Ni-based superalloys 30 Micrometer. Noura Materials R&D Dept.; 2022 September.
25. Gu D. Laser additive manufacturing of high-performance materials: Springer; 2015.
26. Karia M, Popat M, Sangani K, editors. Selective laser melting of Inconel super alloy-a review. AIP Conference Proceedings; 2017: AIP Publishing LLC.
27. Deng D. Additively Manufactured Inconel 718: Microstructures and Mechanical Properties: Linköping University Electronic Press; 2018.
28. Wang X, Gong X, Chou K, editors. Review on powder-bed laser additive manufacturing of Inconel 718 parts. International Manufacturing Science and Engineering Conference; 2015: American Society of Mechanical Engineers.
29. Zhang D, Feng Z, Wang C, Wang W, Liu Z, Niu W. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting. Materials Science and Engineering: A. 2018;724:357-67.
30. Zhu J, Yuan W, Peng F, Fu Q. Interaction of stress relaxation aging behavior and microstructural evolution in Inconel 718 alloy with different initial stress status. Journal of Materials Science. 2021;56(24):13814-26.
31. Lin H, Wang T, Lin K, Chung C, Wang P, Ho W. The stress relaxation of a Fe59Mn30Si6Cr5 shape memory alloy. Journal of alloys and compounds. 2008;466(1-2):119-25.
32. Mirzadeh MJSH. Microstructural Investigation of Inconel 718 Superalloy in the As-Cast and Homogenized Conditions. The journal of Iranian metallurgical engineering society. 2020;22(4):290-5.
33. Zhang D, Niu W, Cao X, Liu Z. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Materials Science and Engineering: A. 2015;644:32-40.
34. Deng D, Peng RL, Moverare J. High temperature mechanical integrity of selective laser melted alloy 718 evaluated by slow strain rate tests. International Journal of Plasticity. 2021;140:102974.
35. Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel‐based superalloy IN718 manufactured by selective laser melting (SLM). Advanced Engineering Materials. 2015;17(8):1099-105.
36. Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Materialia. 2009;57(17):5165-73.
37. Yang J, Jiang H, Yao Z, Dong J. Limitations of calculating stress relaxation limit by function-fitting of Inconel718 superalloy. Materials Letters. 2018;221:89-92.