مراجع
[1] L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, “Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 89, no. 2, pp. 325–334, 2009, doi: 10.1002/jbm.b.31219.
[2] M. Helou and S. Kara, “Design, analysis and manufacturing of lattice structures: An overview,” Int. J. Comput. Integr. Manuf., vol. 31, no. 3, pp. 243–261, 2018, doi: 10.1080/0951192X.2017.1407456.
[3] A. N. Gent and A. G. Thomas, “The deformation of foamed elastic materials,” J. Appl. Polym. Sci., vol. 1, no. 1, pp. 107–113, 1959, doi: 10.1002/app.1959.070010117.
[4] M. F. A. L.J. Gibson, Cellular Solids: Structure and Properties, vol. 22, no. 4. 1989.
[5] A. Nazir, K. M. Abate, A. Kumar, and J. Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” Int. J. Adv. Manuf. Technol., vol. 104, no. 9–12, pp. 3489–3510, 2019, doi: 10.1007/s00170-019-04085-3.
[6] M. Askari et al., “Additive manufacturing of metamaterials: A review,” Addit. Manuf., vol. 36, 2020, doi: 10.1016/j.addma.2020.101562.
[7] https://www.techbriefs.com/component/content/article/25607-lattice-structure-absorbs-vibrations
[8] https://en.wikipedia.org/wiki/Junkers_J_1
[9] R. Potluri and U. Koteswara Rao, “Determination of Elastic Properties of Reverted Hexagonal Honeycomb Core: FEM Approach,” Mater. Today Proc., vol. 4, no. 8, pp. 8645–8653, 2017, doi: 10.1016/j.matpr.2017.07.213.
[10] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor, “Mechanical properties of additively manufactured octagonal honeycombs,” Mater. Sci. Eng. C, vol. 69, pp. 1307–1317, 2016, doi: 10.1016/j.msec.2016.08.020.
[11] A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, “Hierarchical honeycombs with tailorable properties,” Int. J. Solids Struct., vol. 49, no. 11–12, pp. 1413–1419, 2012, doi: 10.1016/j.ijsolstr.2012.02.029.
[12] C. Quan, B. Han, Z. Hou, Q. Zhang, X. Tian, and T. J. Lu, “3D Printed Continuous Fiber Reinforced Composite Auxetic Honeycomb Structures,” Compos. Part B Eng., vol. 187, 2020, doi: 10.1016/j.compositesb.2020.107858.
[13] A. Farrokhabadi, M. M. Ashrafian, H. Gharehbaghi, and R. Nazari, “Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods,” Compos. Struct., vol. 275, 2021, doi: 10.1016/j.compstruct.2021.114410.
[14] A. Cernescu, J. Romanoff, H. Remes, N. Faur, and J. Jelovica, “Equivalent mechanical properties for cylindrical cell honeycomb core structure,” Compos. Struct., vol. 108, no. 1, pp. 866–875, 2014, doi: 10.1016/j.compstruct.2013.10.017.
[15] W. Liu, H. Li, and J. Zhang, “Elastic properties of a cellular structure with in-plane corrugated cosine beams,” Compos. Struct., vol. 180, pp. 251–262, 2017, doi: 10.1016/j.compstruct.2017.08.022.
[16] J. Huang, X. Gong, Q. Zhang, F. Scarpa, Y. Liu, and J. Leng, “In-plane mechanics of a novel zero Poisson’s ratio honeycomb core,” Compos. Part B Eng., vol. 89, pp. 67–76, 2016, doi: 10.1016/j.compositesb.2015.11.032.
[17] V. H. Carneiro, “On the elastic properties of three-dimensional honeycomb lattices,” Compos. Commun., vol. 17, pp. 14–17, 2020, doi: 10.1016/j.coco.2019.11.005.
[18] L. Yang, O. Harrysson, H. West, and D. Cormier, “Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing,” Int. J. Solids Struct., vol. 69–70, pp. 475–490, 2015, doi: 10.1016/j.ijsolstr.2015.05.005.
[19] F. Meng, C. Chen, D. Hu, and J. Song, “Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling,” J. Mech. Phys. Solids, vol. 109, pp. 241–251, 2017, doi: 10.1016/j.jmps.2017.09.003.
[20] M. Xu et al., “In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies,” Aerosp. Sci. Technol., vol. 106, 2020, doi: 10.1016/j.ast.2020.106081.
[21] T. Mukhopadhyay and S. Adhikari, “Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity,” Mech. Mater., vol. 95, pp. 204–222, 2016, doi: 10.1016/j.mechmat.2016.01.009.
[22] L. Lan, J. Sun, F. Hong, D. Wang, Y. Zhang, and M. Fu, “Nonlinear constitutive relations of thin-walled honeycomb structure,” Mech. Mater., vol. 149, 2020, doi: 10.1016/j.mechmat.2020.103556.
[23] Please cite this article as: Yan Wu , Li Yang , The Effect of Unit Cell Size and Topology on Tensile Failure Behavior of 2D Lattice Structures, International Journal of Mechanical Sciences (2019), doi: https://doi.org/10.1016/j.ijmecsci.2019.105342.