مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی ماهیت نوسانی جریان در لوله هارتمن اسپرنگر

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه علم و صنعت ایران
چکیده
در خروجی یک نازل همگرا که به یک منبع گاز پر فشار متصل است، بر اساس مقدار فشار ورودی آن، یک جریان فرومنبسط و فرا صوت که با موج شوک همراه می باشد ایجاد می­گردد. با قرار دادن یک لوله ته بسته در مقابل این نازل همگرا، طرح ساده از دستگاه لوله تشدید هارتمن اسپرنگر شکل می‌گیرد. تأثیر شوک به همراه جریان خروجی نازل بر لوله، گرمایش شدیدی در گاز محبوس در داخل لوله ایجاد می­کند. در این پژوهش سیکل عملکردی لوله تشدید و ماهیت نوسانی جریان داخل آن بررسی گردید. پارامترهای اصلی مساله به صورت فشار ورودی به نازل و فاصله بین لوله و نازل، تعیین و تاثیر تغییر مقدار آن­ها در عملکرد نوسانی جریان داخل لوله و نوسانات فشار انتهای لوله نشان داده شد. فرکانس­های غالب این نوسانات تعیین و بیان شد که در محدوده فشار ورودی یک تا ده بار، محدوده فرکانس­های غالب بین 600 تا 933 هرتز به­دست می­آید که با فرکانس آکوستیکی طبیعی لوله اختلاف دارند. تشدید نوسانات و فرکانس­های غالب تنها در تعداد مشخصی از مقادیر پارامترهای اصلی قابل مشاهده است و گرمایش مورد نظر صرفا در این شرایط ایجاد می­گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Fluctuating Nature of Flow in the Hartmann-Sprenger Tube

نویسندگان English

Mohammad Younesi
Hojat Ghassemi
Iran University of Science and Technology
چکیده English

At the outlet of a converging nozzle connected to a high-pressure gas source, based on its input pressure, an under-expanded and ultrasonic flow is created, accompanied by a shock wave. A simple design of the Hartmann-Sprenger resonance tube device is made by placing a closed-end tube in front of this converging nozzle. The impact of the shock wave and nozzle outflow jet on the tube causes intense heating in the trapped gas inside the tube. This research investigated the functional cycle of the resonance tube and the fluctuating nature of the flow inside it. The main parameters of the problem in the form of the inlet pressure to the nozzle and the distance between the tube and the nozzle, the determination and the effect of changing their value on the fluctuating performance of the flow inside the tube, and the fluctuations of the pressure at the end of the tube were shown. The dominant frequencies of these oscillations were determined and shown that in the range of input pressure from one to ten bar, the range of dominant frequencies is between 600 and 933 Hz, which are slightly different from the resonant frequency of the tube. The intensification of oscillations and dominant frequencies can only be seen in a certain number of values of the main parameters, and the intended heating is created only in these conditions.

کلیدواژه‌ها English

Convergent Nozzle
Gas Dynamic Heating
Resonance Tube
Hartmann Sprenger
Resonance Frequency
[1] J. Hartmann، "On a new method for the generation of sound waves،" Physical Review، المجلد 20، pp. 719-727، 1922.
[2] Marchese, V. P., Rakowsky, E. L. and Bement, L. J.، "A Fluidic Sounding Rocket Motor Ignition system،" Spacecraft، المجلد 10، رقم 11، pp. 731-734، 1973.
[3] H. Sprenger, “On Thermal Effects in Resonance Tubes,” Mitt. Eidgenoss. Tech. Hoch. hst. Aerodynamik, Zuerich, شماره 21, pp. 18-35, 1954.
[4] Hall I. M. and Berry C . J .، "On the Heating Effect in a Resonance Tube،" Aerodynamics Division National Physical Laboratory، Teddington, England، 1958.
[5] P. A. Thompson، "Resonance Tubes, Ph. D. Thesis،" Massachusetts Institute of Technology، 1960.
[6] Saenger R. Alfred and Hudson George E.، "Periodic Shok Waves in Resonating Gas Columns،" The Journal of the Acoustical Society of America، المجلد 32، رقم 8، pp. 961-970، 1960.
[7] Phillips, Bert., Pavli, Albert j. and Conrad, E. William;، "A Resonance Igniter for Hydrogen-Oxygen Combustors،" Spacecraft، المجلد 7، رقم 5، pp. 620-622، 1970.
[8] Merkli P. and Thomann H.، "Thermoacoustic Effects in a Resonance Tube،" J. Fluid Mech.، المجلد 70، رقم 1، pp. 161-177، 1975.
[9] Sarohia V. and Back L. H.، "Experimental investigation of flow and heating in resonance tube،" Journal of Fluid Mechanics، المجلد 94، p. 649، 1979.
[10] Chang S. M. and Lee S. ، "On the jet regurgitant mode of resonant tube,،" Journal of Sound and Vibration، المجلد 246، رقم 4، pp. 567-581، 2001.
[11] Sreejith G.J., Narayanan S., Jothi T.J.S. and Srinivasan K.، "Studies on Conical and Cylindrical Resonators،" Applied Acoustics، المجلد 69، pp. 1161-1175، 2008.
[12] پارسا, المیرا; افضلی خشکبیجاری, بابک; کریمی مزرعه شاهی, حسن, “بررسی تجربی عوامل موثر بر عملکرد حرارتی دستگاه هارتمن اسپنگر,” در سیزدهمین کنفرانس انجمن هوا فضای ایران, تهران, 1392.
[13] Bauer Christian, Hauser Martin and Haidn Oskar J.، "Investigation of Stabilization Effects in Hartmann-Sprenger Tubes،" Institute for Flight Propulsion, Technische Universität München, Germany، 2015.
[14] Afzali B. and Karimi H.، "Numerical investigation on thermo-acoustic effects and flow characteristics in semi-conical Hartmann–Sprenger resonance tube،" Aerospace Engineering IMechE، المجلد Proc IMechE، رقم Part G، pp. 1-17، 2016.
[15] Thethy Bhavraj, Tairych David and Edgington-Mitchell Daniel، "Mechanics of the influx phase in the jet regurgitant mode of a powered resonance tube،" International Journal of Aeroacoustics، المجلد 18، رقم 2-3، pp. 279-298، 2019.
[16] Conte Antonietta, Ferrero Andrea and Pastrone Dario، "Numerical investigation for performance prediction of gas dynamic resonant igniters،" Advances in Aircraft and Spacecraft Science، المجلد 7، رقم 5، pp. 425-440، 2020.
[17] A. H. Shapiro، "Shock Waves and Dissipation in a Resonance Tube.،" J. Aerospace Sci.,، المجلد 26، رقم 10، pp. 684-685، 1959.
[18] M. Sibulkin، "Experimental Investigation of Energy Dissipation in a Resonance Tube،" Z. Angew math. Phys.، المجلد 14، pp. 695-702، 1963.
[19] Raman G. and Srinivasan K.، "The powered resonance tube: From Hartmann's،" Progress in Aerospace، المجلد 45، رقم 4-5، p. 97123، 2009.
[20] Vorozheeva O.A. and Arefyev K.Y.، "Numerical Analysis of the Thermal State of the Resonator in a Gas-Dynamic Ignition System with Two-Phase Fuel Composition،" journal of Higher Educational Institutions Engineering، المجلد 674، رقم 5، pp. 91-100، 2016.
[21] B. Brocher و E. Duport، "Resonance Tube in a subsonic flowfield،" AIAA j.، المجلد 26، رقم 3، pp. 548-551، 1988.