مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی رفتار و مکانیزم شکست جوش سازه‌های فولادی St52 در دمای منفی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشگاه پیام نور، تهران
2 دانشگاه ملی مهارت، تهران
3 گروه مهندسی سازه دانشگاه آزاد اسلامی، بندرعباس
چکیده
در این پژوهش دو نمونه اتصال جوش فولاد ST-52 با استفاده از الکترود قلیایی کم هیدروژن E7018 و E8018 به روش جوشکاری SMAW انجام و سختی، استحکام کششی و مقاومت به ضربه جوش در دمای محیط و منفی 29 درجه سلسیوس مورد بررسی قرار گرفت. نتایج سختی‌سنجی نشان داد بالاترین سختی در ناحیه فلز جوش مربوط به فلز جوش E8018 است. مقادیر سختی‌سنجی برای فلز پایه و ناحیه متاثر از حرارت نیز نشان می­دهد رفتار مشابه مانند فلز جوش در دو نمونه یکسان است. نتایج آزمون ضربه نشان داد میانگین انرژی ضربه فلز جوش E7018 در دمای محیط بیشتر از میانگین انرژی ضربه فلز جوش E8018 است، همچنین میانگین انرژی ضربه در دمای منفی 29 درجه سلسیوس برای فلز جوش E8018 ،J56 و فلز جوش E7018، J73 است. نتایج نشان می­دهد که فلز جوش E8018 در دمای منفی 29 درجه سانتی‌­گراد رفتار شکست ترد و مقاومت به ضربه کمتری نسبت به فلز جوش E7018 دارد. نتایج حاصل از آزمایش کشش عرضی جوش نشان داد استحکام نهایی جوش هر دو فلز پرکننده بالاتر از 546 مگا پاسکال است به ‌طوری ‌که نمونه کششی از محل فلز پایه ST-52 دچار شکست شد. براساس مبحث دهم مقرّرات ملی ساختمان ایران و همچنین ضوابط لرزه‌ای آیین‌نامه AISC341-10 فلزات پرکننده E7018 و E8018 الزامات استحکام نهایی و مقاومت به ضربه جوش در دمای محیط و منفی 29 درجه سانتی‌گراد را تأمین می‌نمایند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of Behavior and Failure Mechanism of Welding ST52 Steel Structures at Negative Temperature

نویسندگان English

moslem mohammadi soleymani 1
Ehsan Mehrabi gohari 2
Samane Khorami 3
1 Department of Mechanical Engineering, Payame Noor University, Tehran
2 National University of Skills, Tehran
3 Master of Structural Engineering, Islamic Azad University, Bandar Abbas
چکیده English

In this research, two examples of ST-52 steel welding joints were performed by the SMAW welding method using low-hydrogen alkaline electrodes E7018 and E8018. The hardness, tensile strength, and impact toughness of weld were examined and studied at ambient temperature and -29 °C. The hardness test results showed that the highest hardness at the weld metal region belonged to the welding metal E8018. The hardness values for the base metal and the heat-affected area also indicated that the similar weld metal-like behavior is the same in the two samples. The impact test results demonstrated that the mean impact energy of the weld metal E7018 at ambient temperature was higher than E8018. Also, the mean impact energy at -29 °C for the weld metals E8018 and E7018 was equal to 56 J and 73 J, respectively. According to the results, the weld metal E8018 at a temperature of -29 °C shows a more brittle fracture behavior and lower impact toughness than the E7018 weld metal. The results of the weld tensile test revealed that the final weld strength of both filler metals was higher than 546 MPa so that the tensile sample failed from the ST-52 base metal site. According to the Tenth Article of the National Building Regulations of Iran as well as the Seismic Rules of the Regulation AISC 341-10, filler metals E7018 and E8018 meet the requirements of the weld final strength and impact toughness at ambient temperature and -29 °C.

کلیدواژه‌ها English

Fracture mechanism
Welding areas
impact test
St52 steel
Negative temperat
[1] Mehrabi Gohari E, Mohammadi M, Nozari M, Bagherpour H. Thermal Analysis of Laser Welding in Joint of Stainless Steel to Low Carbon Steel Using Finite Element Method (FEM). Modares Mechanical Engineering. 2019 Jun 10;19(6):1475-82. http://dorl.net/dor/20.1001.1.10275940.1398.19.6.5.9 [In Persian]
[2] Osouli-Bostanabad K, Tutunchi A, Eskandarzade M, Kianvash A. Numerical and experimental investigation on boding strength optimization of glass fibers-reinforced epoxy composites on a structural steel substrate. Modares Mechanical Engineering. 2019 Feb 20;19(2):387-96. http://dorl.net/dor/20.1001.1.10275940.1397.19.2.4.6 [In Persian]
[3] Sabokrouh M, Farahani M. Experimental investigation of the Annealing Effect on the Mechanical Properties of Girth Welding Using Nanoparticles on Gas Transmission Pipeline. Modares Mechanical Engineering. 2020 May 10;20(5):1107-13. http://dorl.net/dor/20.1001.1.10275940.1399.20.5.4.3 [In Persian]
[4] Riabov, M.V., Lerner, Y.S. & Fahmy, M.F. Effect of low temperatures on charpy impact toughness of austempered ductile irons. J. of Materi Eng and Perform. 2002; 11: 496–503. https://doi.org/10.1361/105994902770343728
[5] Kim JH, Choi SW, Park DH, Lee JM. Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: Effect of low temperatures. Materials & Design (1980-2015). 2015 Jan 1;65:914-22. https://doi.org/10.1016/j.matdes.2014.09.085
[6] Mohammed RA, Abdulwahab M, Dauda ET. Properties evaluation of shielded metal arc welded medium carbon steel material. International Journal of Innovative Research in Science, Engineering and Technology. 2013 Aug;2(8):3351-7.
[7] de Jesus Jorge L, Cândido VS, da Silva AC, da Costa Garcia Filho F, Pereira AC, da Luz FS, Monteiro SN. Mechanical properties and microstructure of SMAW welded and thermically treated HSLA-80 steel. Journal of materials research and technology. 2018 Oct 1;7(4):598-605. https://doi.org/10.1016/j.jmrt.2018.08.007
[8] Abbas H, Aminy AY. The effects of shielded metal arc welding (smaw) welding on the mechanical characteristics with heating treatment inn S45c steel. InJournal of Physics: Conference Series 2018 Feb 1 (Vol. 962, No. 1, p. 012063). IOP Publishing. DOI 10.1088/1742-6596/962/1/012063
[9] Tahir AM, Lair NA, Wei FJ. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding). InAIP conference proceedings 2018 May 9 (Vol. 1958, No. 1). AIP Publishing. https://doi.org/10.1063/1.5034534
[10] Selvam RA, Jacob SU. Experimental Investigation and Analysis of Smaw Processed Carbon Steel Pipes. International Journal of Mechanical and Production Engineering Research and Development. 2018 Oct;8(5):29-40.
[11] Weerasekralage LS, Karunarathne M, Pathirana S. Optimization of Shielded Metal Arc Welding (SMAW) process for mild steel. Journal Engineer, August. 2019:1-7.
[12] Talabi SI, Owolabi OB, Adebisi JA, Yahaya T. Effect of welding variables on mechanical properties of low carbon steel welded joint.
[13] Tong L, Niu L, Jing S, Ai L, Zhao XL. Low temperature impact toughness of high strength structural steel. Thin-Walled Structures. 2018 Nov 1;132:410-20. https://doi.org/10.1016/j.tws.2018.09.009
[14] Barbosa VS, de Godois LA, Bianchi KE, Ruggieri C. Charpy impact energy correlation with fracture toughness for low alloy structural steel welds. Theoretical and Applied Fracture Mechanics. 2021 Jun 1;113:102934. https://doi.org/10.1016/j.tafmec.2021.102934
[15] Liu H, Zhou Y, Wang F, Lu Y, Chen Z. Experimental study on impact toughness of structural steel and its butt-welded joint at low temperature and corrosion. Journal of Constructional Steel Research. 2024 Jan 1;212:108298. https://doi.org/10.1016/j.jcsr.2023.108298
[16] Shin HS, Park KT, Lee CH, Chang KH, Van Do VN. Low temperature impact toughness of structural steel welds with different welding processes. KSCE Journal of Civil Engineering. 2015 Jul;19:1431-7. https://doi.org/10.1007/s12205-015-0042-8
[17] Dornelas PH, Farias FW, e Oliveira VH, de Oliveira Moraes D, Júnior PZ, da Cruz Payão Filho J. Influence of welding interpass temperature on Charpy V-notch impact energy of coarse-grain heat-affected zone of AISI 4130 steel pipe. The International Journal of Advanced Manufacturing Technology. 2020 Jun;108:2197-211. https://doi.org/10.1007/s00170-020-05542-0
[18] Zhang S, Wang Y, Zhu M, Zhang Z, Nie P, Li Z. Relationships among Charpy impact toughness, microstructure and fracture behavior in 10CrNi3MoV steel weld joint. Materials Letters. 2020 Dec 15;281:128328. https://doi.org/10.1016/j.matlet.2020.128328
[19] Lin YC, Lin YC. Microstructure and tribological performance of Ti–6Al–4V cladding with SiC powder. Surface and Coatings Technology. 2011 Sep 25;205(23-24):5400-5. https://doi.org/10.1016/j.surfcoat.2011.06.001
[20] Wan X, Wu K, Huang G, Wei R. In Situ Observations of the Formation of Fine‐Grained Mixed Microstructures of Acicular Ferrite and Bainite in the Simulated Coarse‐Grained Heated‐Affected Zone. steel research international. 2014 Feb;85(2):243-50. https://doi.org/10.1002/srin.201200313
[21] Wan XL, Wei R, Wu KM. Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone. Materials Characterization. 2010 Jul 1;61(7):726-31. https://doi.org/10.1016/j.matchar.2010.04.004
[22] Dong H, Hao X, Deng D. Effect of welding heat input on microstructure and mechanical properties of HSLA steel joint. Metallography, microstructure, and analysis. 2014 Apr;3:138-46. https://doi.org/10.1007/s13632-014-0130-z
[23] Lundin CD, Zhou G, Khan KK. Report no. 1-Metallurgical Characterization of the HAZ in A516-70 and Evaluation of Fracture Toughness Specimens. Welding research council Bulletin. 1995(403).
[24] Funderburk RS. Key concepts in welding engineering. Welding Innovation. 1999;16(1):1-4.
[25] American Institute of Steel Construction. Seismic provisions for structural steel buildings. American Institute of Steel Construction; 2002.
[26] National Building Regulations of Iran, Tenth Theme, Designing and Implementing Steel Buildings. Engineering Bureau Office, Third Edition, 1392.
[27] Mills WJ. Fracture toughness of type 304 and 316 stainless steels and their welds. International Materials Reviews. 1997 Jan;42(2):45-82.
[28] Design RF. Specification for structural steel buildings. American Institute of Steel Construction, Chicago (IL, USA). 2005.