مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل ارتعاشات غیرفعال یک تیر دوار غیرخطی با استفاده از جاذب ارتعاشات غیرخطی و تحلیل پایداری

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه تربیت مدرس
2 پژوهشگاه نیرو
چکیده
کنترل ارتعاشات غیرفعال تیرهای غیرخطی چرخان به دلیل پتانسیل آن در کاهش ارتعاشات مضر در کاربردهای مختلف مهندسی، از جمله بخش‌های هوافضا و صنعتی، بسیار مهم است. این مطالعه بررسی می‌کند که چگونه پارامترهای مختلف سیستم و غیرخطی‌های ذاتی بر ارتعاشات یک تیر چرخان غیرخطی که تحت نیروهای خارجی متناوب قرار دارد، تأثیر می‌گذارند. یک جاذب انرژی غیرخطی (NES) به نوک تیر متصل شده تا ارتعاشات را کاهش دهد. سیستم با استفاده از نظریه تیر اویلر-برنولی و روابط کرنش-جابجایی فون کارمان مدل‌سازی شده و معادلات حرکت از طریق اصل همیلتون استخراج شده‌اند. روش‌ میانگینگیری مختلط و رانگ-کوتا برای حل‌های تحلیلی و عددی به ترتیب اعمال شده‌اند. نتایج نشان می‌دهد که افزایش سختی، دامنه ارتعاش را کاهش می‌دهد، در حالی که افزایش ضریب غیرخطی رفتار سخت‌شوندگی را ایجاد می‌کند. سیستم تحت شرایط خاصی، انشعابات زینی و هاپف را نشان می‌دهد که نشان‌دهنده تاثیرات دینامیکی پیچیده است. این پدیده‌ها که توسط غیرخطی بودن تیر و NES هدایت می‌شوند، به طور مؤثری دامنه ارتعاش را کاهش می‌دهند و پاسخ‌های دینامیکی پیچیده سیستم و کارایی NES در کاهش ارتعاشات را برجسته می‌کنند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Passive Vibration Control of a Nonlinear Rotating Beam Using a Nonlinear Vibration Absorber and Stability Analysis

نویسندگان English

Ali Tangsiri 1
Morteza Karamooz Mahdiabadi 1
Saeed Bab 2
1 Tarbiat Modares University
2 Niroo Research Institute
چکیده English

Passive vibration control of rotating nonlinear beams is crucial due to its potential to mitigate harmful vibrations in various engineering applications, including aerospace and industrial sectors. This study examines how different system parameters and inherent nonlinearities influence the vibrations of a nonlinear rotating beam subjected to periodic external forces. A nonlinear energy sink (NES) is attached to the beam's tip to attenuate vibrations. The system is modeled using the Euler-Bernoulli beam theory and von Kármán strain-displacement relations, with equations of motion derived via Hamilton’s principle. Complexification Averaging and Runge-Kutta methods are applied for analytical and numerical solutions, respectively. The findings reveal that increasing the stiffness reduces vibration amplitude, while a rise in the nonlinear coefficient induces hardening behavior. The system exhibits saddle-node and Hopf bifurcations under certain conditions, indicating complex dynamic transitions. These phenomena, driven by the beam's nonlinearity and the NES, effectively diminish the vibration amplitude, highlighting the system's complex dynamic responses and the NES's efficacy in vibration mitigation

کلیدواژه‌ها English

Rotating nonlinear beam
Nonlinear Energy Sink
vibration mitigation
Hopf bifurcations
saddle-node bifurcations
[1] S. Bab, S. Khadem, M. Mahdiabadi, and M. Shahgholi, "Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES)," Journal of Vibration and Control, vol. 23, no. 6, pp. 1001-1025, 2017.
[2] K. K. Bera, G. Aravind, and A. Banerjee, "Vibration control of a pre-twisted rotating beam with nonlinear bi-stable attachments," in Structures, 2023, vol. 57: Elsevier, p. 105050.
[3] A. Abdollahi, S. Khadem, M. Khazaee, and A. Moslemi, "On the analysis of a passive vibration absorber for submerged beams under hydrodynamic forces: An optimal design," Engineering Structures, vol. 220, p. 110986, 2020.
[4] M. Bukhari and O. Barry, "Exact nonlinear dynamic analysis of a beam with a nonlinear vibration absorber and with various boundary conditions," Journal of Computational and Nonlinear Dynamics, vol. 15, no. 1, p. 011003, 2020.
[5] B. Chouvion, "Vibration analysis of beam structures with localized nonlinearities by a wave approach," Journal of Sound and Vibration, vol. 439, pp. 344-361, 2019.
[6] Y. Zhao, J. Du, and Y. Liu, "Vibration suppression and dynamic behavior analysis of an axially loaded beam with NES and nonlinear elastic supports," Journal of Vibration and Control, vol. 29, no. 3-4, pp. 844-857, 2023.
[7] E. Pesheck, C. Pierre, and S. W. Shaw, "Modal reduction of a nonlinear rotating beam through nonlinear normal modes," J. Vib. Acoust., vol. 124, no. 2, pp. 229-236, 2002.
[8] A. Baxy and A. Sarkar, "Natural frequencies of rotating twisted beams: a perturbation method based approach," Meccanica, vol. 55, pp. 2075-2089, 2020.
[9] J. Huang, K. Zhou, J. Xu, K. Wang, and H. Song, "Flap-wise vibrations of non-uniform rotating cantilever beams: An investigation with operational experiments," Journal of Sound and Vibration, vol. 553, p. 117648, 2023.
[10] E. Basta, M. Ghommem, and S. Emam, "Vibration suppression of nonlinear rotating metamaterial beams," Nonlinear Dynamics, vol. 101, pp. 311-332, 2020.
[11] J. Wu and B. Titurus, "Vibration control of a rotating Timoshenko beam-tendon system via internal guiding inerter-dampers," Journal of Sound and Vibration, vol. 516, p. 116542, 2022.
[12] S. Hao, Y. Yamashita, and K. Kobayashi, "Passivity‐based control of nonlinear active dynamic vibration absorber," International Journal of Robust and Nonlinear Control, vol. 33, no. 5, pp. 3247-3266, 2023.
[13] Z. Zhang, Z.-T. Gao, B. Fang, and Y.-W. Zhang, "Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks," Nonlinear Dynamics, vol. 109, no. 3, pp. 1259-1275, 2022.
[14] F. S. Samani, F. Pellicano, and A. Masoumi, "Performances of dynamic vibration absorbers for beams subjected to moving loads," Nonlinear Dynamics, vol. 73, pp. 1065-1079, 2013.
[15] L. Wang, Z. Su, and L. Wang, "Inplane vibration analysis of rotating beams with elastic restraints," Journal of Vibration and Control, vol. 29, no. 7-8, pp. 1484-1497, 2023.
[16] Y. Fang, L. Li, D. Zhang, S. Chen, and W.-H. Liao, "Vibration suppression of a rotating functionally graded beam with enhanced active constrained layer damping treatment in temperature field," Thin-Walled Structures, vol. 161, p. 107522, 2021.
[17] L. Meirovitch, Fundamentals of vibrations. Waveland Press, 2010.
[18] A. I. Manevich and L. I. Manevich, The mechanics of nonlinear systems with internal resonances. World Scientific, 2005.
[19] P. S. Balaji and K. Karthik SelvaKumar, "Applications of nonlinearity in passive vibration control: a review," Journal of Vibration Engineering & Technologies, vol. 9, pp. 183-213, 2021.
[20] M. M. Nazari and A. Rahi, "Parameters optimization of a nonlinear dynamic absorber for a nonlinear system," Archive of Applied Mechanics, vol. 93, no. 8, pp. 3243-3258, 2023.
[21] A. Haris, P. Alevras, M. Mohammadpour, S. Theodossiades, and M. O’Mahony, "Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems," Nonlinear Dynamics, vol. 100, pp. 33-49, 2020.
[22] S. L. Feudo, C. Touzé, J. Boisson, and G. Cumunel, "Nonlinear magnetic vibration absorber for passive control of a multi–storey structure," Journal of Sound and Vibration, vol. 438, pp. 33-53, 2019.
[23] P. Liao, "Non-linear vibration and bifurcation analysis of Euler-Bernoulli beam under parametric excitation," Journal of Engineering and Applied Science, vol. 71, no. 1, p. 85, 2024.
[24] D. Younesian and E. Esmailzadeh, "Vibration suppression of rotating beams using time-varying internal tensile force," Journal of sound and vibration, vol. 330, no. 2, pp. 308-320, 2011.
[25] L. Pipes, "Analysis of a nonlinear dynamic vibration absorber," 1953.
[26] J. de Bruin, "Application of a dynamic vibration absorber to a piecewise linear beam system under pre-tension," 2005.
[27] A. H. Nayfeh and B. Balachandran, Applied nonlinear dynamics: analytical, computational, and experimental methods. John Wiley & Sons, 2008.