مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی و تجربی عرض ورق در فرایند شکل‌دهی غلتکی سرد لوله‌های فولادی با نسبت ضخامت به قطر بالا

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، جمهوری اسلامی ایران
2 دانشکده مهندسی مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، جمهوری اسلامی ایران
چکیده
شکل‌دهی غلتکی سرد رایج‌ترین روش برای تولید لوله‌های فولادی است که در آن یک ورق فولادی از طریق مجموعه‌ای از ایستگاه‌های شکل‌دهی به‌تدریج دچار تغییرشکل می‌شود. برای دست­یابی به لوله‌هایی با کیفیت بالا، تعیین دقیق عرض ورق اولیه با در نظر گرفتن تغییرشکل‌های مورد نیاز ضروری است. در این مقاله، عرض ورق اولیه برای لوله‌های فولادی با نسبت ضخامت به قطر بالا بررسی می‌شود، که تأثیر ضخامت از پارامترهای مهم آن است. یک خط صنعتی شکل‌دهی غلتکی سرد با استفاده از نرم‌افزار تجاری اجزای محدود اباکوس شبیه‌سازی شده است. محیط ورق تغییر شکل یافته و فاصله بین دو لبه آن در خط تولید اندازه‌گیری شد و با مقایسه نتایج آن با نتایج شبیه‌سازی اجزای محدود، صحت مدل اجزای محدود مورد تایید قرار گرفت. سپس، عرض ورق اولیه مناسب برای تولید لوله‌هایی از جنس فولاد St37  با قطر خارجی 1/219  میلی‌متر و ضخامت‌های ۶، ۱۰ و ۱۴ میلی‌متر تعیین گردید. تعیین عرض ورق اولیه با در نظر گرفتن معیارهایی مانند محیط خارجی لوله، کرنش طولی، توزیع انحنای نسبی و توزیع ضخامت ورق تغییر شکل یافته صورت پذیرفت نتایج نشان داد که افزایش ضخامت لوله از 6 میلی­متر به 14 میلی­متر منجر به افزایش میزان کاهش بهینه در مرحله پره‌ای از 4/1 درصد به 2 درصد می‌شود. بر این اساس، عرض ورق اولیه مناسب و بهینه برای لوله­های جدار ضخیم نسبت به مقاطع جدار نازک کوچک­تر می­باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical and experimental investigation on strip width in cold roll forming process of steel pipes with high thickness-to-diameter ratio

نویسندگان English

Mohammad Reza Khlil Arjmandi 1
Hassan Moslemi Naeini 1
Mehdi Karimi Firouzjaei 1
Behnam Abbaszadeh 1
Mohammad Mehdi Kasaei 2
1 Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, IR Iran
2 3 Department of Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, IR Iran
چکیده English

Roll forming is the most prevalent method for producing steel pipes, in which a steel strip undergoes gradual deformation through a series of forming stations. To ensure the production of high-quality pipes, precise determination of the initial strip width considering the required deformations is necessary. This paper focuses on determining the initial strip width for steel pipes with high thickness-to-diameter ratios, where the effect of thickness is significant. An industrial roll forming line is simulated using the commercial finite element software ABAQUS. The circumference of the deformed strip and the distance between its two edges are measured on the production line, and these measurements are then compared with the simulation results to validate the accuracy of the finite element model. Subsequently, the optimal initial strip width is determined for production of St37 steel pipes with an external diameter of 219.1 mm and thicknesses of 6, 10, and 14 mm. Determination of initial strip width is done considering criteria such as circumferential length of pipe, longitudinal strain, relative curvature distribution, and thickness distribution of deformed strip. The results showed that an increase in the thickness of the pipe from 6 mm to 14 mm leads to a higher optimal reduction ratio in the fin-pass stations from 1.4 to 2 percent. Consequently, the appropriate on optimal initial strip width for thick-walled pipes is smaller than for thin-walled sections.

کلیدواژه‌ها English

Roll forming of pipe
initial strip width
high thickness to diameter
[1] G. T. Halmos, Roll forming handbook. Crc Press, 2005. http://doi.org/10.1201/9781420030693
[2] H. Talebi-Ghadikolaee, M. Elyasi, Y. Dadgar Asl, A. Zeinolabedin Beygi, and M. Davoudi, "Feasibility of forming U-shaped microchannels by flexible-die forming process," Karafan Journal, vol. 19, No. 3, pp. 53-70, 2022.
[3] M.M. Kasaei, H. Moslemi Naeini, B. Abbaszadeh, A.H. Roohi, M.B. Silva, and P.A.F. Martins, "On the prediction of wrinkling in flexible roll forming," The International Journal of Advanced Manufacturing Technology, vol. 113, no. 7, pp. 2257–2275, 2021. http://doi.org/10.1007/s00170-021-06790-4
 [4] S. Hajiahmadi, H. Moslemi Naeini, H. Talebi-Ghadikolaee, R. Safdarian, and A. Zeinolabedin-Beygi, "Insights into spring-back prediction: a comparative analysis of constitutive models for perforated U-shaped roll-formed steel profiles," The International Journal of Advanced Manufacturing Technology, vol. 134, no. 3, pp. 1915–1933, 2024. http://doi.org/10.1007/s00170-024-14211-5
[5] M. Kasaei, H. Moslemi Naeini, M. Salmani Tehrani, and R. Azizi Tafti, "Numerical and experimental investigation of strip deformation in cage roll forming process for pipes with low ratio of thickness/diameter," in AIP Conference Proceedings, vol. 1315, no. 1, pp. 593–598, 2011. http://doi.org/10.1063/1.3552512
[6] B. Shirani Bidabadi, H. Moslemi Naeini, R. Safdarian, and H. Barghikar, "Investigation of over-bending defect in the cold roll forming of U-channel section using experimental and numerical methods," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 236, no. 10, pp. 1380–1392, 2022. http://doi.org/10.1177/09544054221076628
[7] M.M. Kasaei, H. Moslemi Naeini, B. Abbaszadeh, S. J. Hashemi, and L.F.M. da Silva, "Improvement of material flow in tube hydroforming by advanced sealing methods," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 238, no. 3, pp. 442–453, 2024. http://doi.org/10.1177/09544054231184914
[8] H. Mohammdi Najafabadi, H. Moslemi Naeini, R. Safdarian, M.M. Kasaei, D. Akbari, and B. Abbaszadeh, "Effect of forming parameters on edge wrinkling in cold roll forming of wide profiles," The International Journal of Advanced Manufacturing Technology, vol. 101, pp. 181–194, 2019. http://doi.org/10.1007/s00170-018-2885-x
[9] N. Kim, B. Kang, and S. Lee, "Prediction and design of edge shape of initial strip for thick tube roll forming using finite element method," Journal of Materials Processing Technology, vol. 142, no. 2, pp. 479–486, 2003. http://doi.org10.1016/s0924-0136(03)00645-9
[10] J. Jiang, D. Li, Y. Peng, and J. Li, "Research on strip deformation in the cage roll-forming process of ERW round pipes," Journal of materials processing technology, vol. 209, no. 10, pp. 4850-4856, 2009. http://doi.org/10.1016/j.jmatprotec.2009.01.011
[11] M.M. Kasaei, H. Moslemi Naeini, R. Azizi Tafti, and M. Salmani Tehrani, "Prediction of maximum initial strip width in the cage roll forming process of ERW pipes using edge buckling criterion," Journal of materials processing technology, vol. 214, no. 2, pp. 190–199, 2014. http://doi.org/10.1016/j.jmatprotec.2013.08.012
[12] M. Karimi Firouzjaei, H. Moslemi Naeini, M.M. Kasaei, B. Abbaszadeh, and L.F.M. da Silva, "Effect of flower pattern design on the springback of high strength steel in cold roll forming process of pipes," in International Conference on Mechanics of Solids, Springer, pp. 49–61, 2022. http://doi.org/10.1007/978-3-031-26797-0_5
[13] M. Karimi Firouzjaei, H. Moslemi Naeini, H. Farahmand, B. Abbaszadeh, and M.M. Kasaei, "Numerical and experimental investigation on flower pattern design methods in cold roll forming process of a high strength steel pipe," Modares Mechanical Engineering, vol. 17, no. 10, pp. 259–270, 2018.
[14] J. Cao, X. Wang, K. Ruan, J. Cheng, Z. Wei, and R. Zhao, "Numerical simulation research on UDF flexible roll forming of multi-specification thin-walled circular tubes," The International Journal of Advanced Manufacturing Technology, vol. 127, no. 9, pp. 4503–4517, 2023. http://doi.org/10.1007/s00170-023-11824-0
[15] A. E. Satellou and M. Sedighi, "Effect of different roll-forming flower patterns on coiled tubing ovality and pressure performance," Geoenergy Science and Engineering, vol. 225, p. 211687, 2023. http://doi.org/10.1016/j.geoen.2023.211687
[16] M.R. Khalil Arjmandi, H. Moslemi Naeini, M.M. Kasaei, B. Abbaszadeh, M. Karimi Firouzjaei, and L.F.M. da Silva, "A method for determining initial strip width in roll forming of thick-walled steel pipes," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p. 09544054241308925, 2024. http://doi.org/10.1177/09544054241308925
[17] S. Hajiahmadi, H. Moslemi Naeini, H. Talebi-Ghadikolaee, R. Safdarian, and A. Zeinolabedin-Beygi, "Effect of anisotropy on spring-back of pre-punched profiles in cold roll forming process: an experimental and numerical investigation," The International Journal of Advanced Manufacturing Technology, vol. 129, no. 9, pp. 3965–3978, 2023. doi:10.1007/s00170-023-12516-5
[18] A. Zeinolabedin-Beygi, H. Moslemi Naeini, H. Talebi-Ghadikolaee, A.H. Rabiee, and S. Hajiahmadi, "Predictive modeling of spring-back in pre-punched sheet roll forming using machine learning," The Journal of Strain Analysis for Engineering Design, vol. 59, no. 7, pp. 463–474, 2024. http://doi.org/10.1177/03093247241263685
[19] M. Karimi Firouzjaei, H. Moslemi Naeini, M.M. Kasaei, M.J. Mirnia, and L.F.M. da Silva, "Microscale modeling of the ductile fracture behavior of thin stainless steel sheets," Thin-Walled Structures, vol. 196, p. 111457, 2024. http://doi.org/10.1016/j.tws.2023.111457
[20] P. Men, J. Di, F. Qin, E. Lin, J. Wang, and X. Peng, "Experimental investigation on axial compression behaviour of cold-formed thick-walled steel tubes," Journal of Constructional Steel Research, vol. 214, p. 108431, 2024. http://doi.org/10.1016/j.jcsr.2023.108431
[21] M. Karimi Firouzjaei, H. Moslemi Naeini, M.M. Kasaei, and M.J. Mirnia, "A constitutive model for stainless steel 304 sheet considering size effect in micro-scale," Modares Mechanical Engineering, vol. 22, no. 8, pp. 519–528, 2022. http://doi.org/10.52547/mme.22.8.519
[22] G.-W. Li, Y.-Q. Li, J. Xu, and X. Cao, "Experimental investigation on the longitudinal residual stress of cold-formed thick-walled SHS and RHS steel tubes," Thin-Walled Structures, vol. 138, pp. 473–484, 2019. http://doi.org/10.1016/j.tws.2018.09.036
[23] R. Reghunath and S. Korah, "Analysis of Internally Pressurised Thick Walled Cylinders," Journal of Basic and Applied Engineering Research, vol. 1, no. 2, pp. 83–89, 2014.
[24] M. Z. Abathun, J. Han, and W. Yu, "Effects of manufacturing methods and production routes on residual stresses of rectangular and square hollow steel sections: a review," Archives of Civil and Mechanical Engineering, vol. 21, no. 3, p. 100, 2021. http://doi.org/10.1007/s43452-021-00193-8
[25] Z. Luo, M. Sun, Z. Zhang, C. Lu, G. Zhang, and X. Fan, "Finite element analysis of circle-to-rectangle roll forming of thick-walled rectangular tubes with small rounded corners," International Journal of Material Forming, vol. 15, no. 6, p. 73, 2022. http://doi.org/10.1007/s12289-022-01719-y
[26] D. Liu, H. Liu, Z. Chen, and X. Liao, "Structural behavior of extreme thick-walled cold-formed square steel columns," Journal of Constructional Steel Research, vol. 128, pp. 371–379, 2017. http://doi.org/10.1016/j.jcsr.2016.09.004
[27] M. Karimi Firouzjaei, H. Moslemi Naeini, B. Abbaszadeh, and M.M. Kasaei, " Effect of flower pattern on the curvature of high-strength steel pipe in roll forming," Analy. Numer. Methods Mech, vol. 1, no. 1, pp. 9–18, 2022.
[28] H. Badparva, H. Moslemi Naeini, M.M. Kasaei, Y. Dadgar Asl, B. Abbaszadeh, and L.F.M. da Silva," Deformation length in flexible roll forming," The International Journal of Advanced Manufacturing Technology, vol. 125, no. 3, pp. 1229–1238, 2023. http://doi.org/10.1007/s00170-023-10803-9