مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل فرکانسی نانولوله‌های تک جداره احاطه شده در بستر وینکلر-پاسترناک با استفاده از تئوری غیرمحلی و روش مربعات دیفرانسیلی توسعه یافته

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه مهندسی مکانیک، دانشگاه زنجان، زنجان، ایران
10.48311/mme.2025.96886.0
چکیده
در این پژوهش، فرکانس‌های طبیعی ارتعاشات آزاد نانولوله‌های تک‌جداره محاط در بستر الاستیک وینکلر-پاسترناک با استفاده از مدل پوسته نازک و تئوری الاستیسیته غیرمحلی مورد تحلیل قرار گرفته است. معادلات حرکت حاکم بر رفتار مکانیکی نانولوله، بر پایه تئوری پوسته لاو استخراج شده‌اند. با توجه به اینکه تئوری کلاسیک الاستیسیته قادر به لحاظ کردن اثرات مقیاس کوچک در تحلیل رفتار نانوسازه‌ها نیست و لذا استفاده از آن برای تحلیل رفتار مکانیکی نانولوله منجر به خطا در پیش‌بینی نتایج می‌شود، از تئوری الاستیسیته غیرمحلی ارینگن جهت مدل‌سازی اثر اندازه کوچک استفاده شده است. سپس معادلات حاکم بر نانولوله با استفاده از روش مربعات دیفرانسیلی توسعه‌یافته گسسته‌سازی و به مسئله مقدار ویژه تبدیل شده‌اند. سپس فرکانس‌های طبیعی برای مودهای مختلف طولی و محیطی محاسبه شده‌اند. نتایج به‌دست‌آمده با داده‌های موجود در منابع مقایسه و اعتبار مدل بررسی شده است. همچنین در بخش نتایج عددی، اثر پارامترهایی مانند نسبت طول به شعاع، نسبت شعاع به ضخامت، خواص بستر الاستیک و ضریب غیرمحلی بر فرکانس طبیعی نانولوله کربنی در شرایط مرزی مختلف تحلیل و گزارش شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Frequency Analysis of Single-Walled-Nanotube embedded in a Winkler-Pasternak Foundation using Generalized Differential Quadrature Method

نویسندگان English

Mahdi Babakhani
Isa Ahmadi
Mechanical Engineering Department, University of Zanjan, Zanjan, Iran
چکیده English

Due to the importance of investigating the vibrational behavior of carbon nanotubes, extensive research has been conducted in this field. In the present study, the natural frequencies of free vibrations of Single-Walled-Nanotube embedded in an elastic Winkler-Pasternak foundation are analyzed using a thin shell model and nonlocal elasticity theory. The governing equations of motion are derived based on Love’s shell theory and Hamilton’s principle. Since classical elasticity theory does not account for small-scale effects in the analysis of nanoscale structures—which can lead to inaccuracies in prediction—the Eringen's nonlocal elasticity theory is employed for more accurate modeling. The governing equations are discretized using the extended differential quadrature method and converted into an eigenvalue problem. Natural frequencies for various longitudinal and circumferential vibration modes are then computed. The predicted frequencies are compared with available data in the literature to validate the model. Furthermore, in the numerical results section, the effects of various parameters such as the length-to-radius ratio, radius-to-thickness ratio, properties of the elastic foundation, and the nonlocal parameter on the natural frequency of the carbon nanotube under different boundary conditions are analyzed and reported.

کلیدواژه‌ها English

Frequency Analysis of Single-Walled-Nanotube embedded in a Winkler-Pasternak Foundation using Generalized Differential Quadrature Method
 
[1] I. Kang et al., "Introduction to carbon nanotube and nanofiber smart materials," Composites Part B: Engineering, vol. 37, no. 6, pp. 382-394, 2006.
[2] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, pp. 56-58, 1991.
[3] C. Gutsche, "S. Reich, C. Thomsen, J. Maultzsch: Carbon nanotubes, basic concepts and physical properties: Wiley-VCH, 2004," ed: Springer, 2004.
doi:10.1007/s00396-004-1180-6
[4] J. Yoon, C. Ru, and A. Mioduchowski, "Vibration of an embedded multiwall carbon nanotube," Composites Science and Technology, vol. 63, no. 11, pp. 1533-1542, 2003.
[5] C. Wang, V. Tan, and Y. Zhang, "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes," Journal of Sound and Vibration, vol. 294, no. 4-5, pp. 1060-1072, 2006.
[6] T. Murmu and S. Pradhan, "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory," Computational Materials Science, vol. 46, no. 4, pp. 854-859, 2009.
[7] M. Şimşek, "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory," Physica E: Low-dimensional Systems and Nanostructures, vol. 43, no. 1, pp. 182-191, 2010. doi:10.1016/j.physe.2010.07.003
[8] R. Ansari and H. Rouhi, "Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory," J. Eng. Mater. Technol. 2012, vol. 134, no. 1, pp. 011008, 2012. doi:10.1115/1.4005347
[9] R. Ansari, H. Rouhi, and B. Arash, "Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach," IJST, Transactions of Mechanical Engineering, Vol. 37, No. M2, pp 91-105, 2013. doi:10.22099/ijstm.2013.1740
[10] S. Pradhan and U. Mandal, "Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect," Physica E: Low-dimensional Systems and Nanostructures, vol. 53, pp. 223-232, 2013.
[11] R. Ansari Khalkhali, A. Norouzzadeh, R. Gholami, "Forced vibration analysis of conveying fluid carbon nanotube resting on elastic foundation based on modified couple stress theory, " Modares Mechanical Engineering, Vol. 15, No. 3, pp. 27-34, 2015 (In Persian), doi:20.1001.1.10275940.1394.15.3.34.4
[12] H, Ramezannejad Azarboni, H. Keshavarzpour Primary resonance analysis of a curved single walled carbon nanotubes on the viscoelastic medium in thermal environment under harmonic force. Modares Mechanical Engineering 18 (5), pp.211-217, 2018; (In Persian), dor:20.1001.1.10275940.1394.15.3.34.4
[13] B. Shahriari, , M.T. Ahmadian, V. Ghorbanian Kerdabadi, "Investigation of curved shaped carbon nano tubes behavior on an elastic foundation due to sinusoidal load using nonlocal elasticity theory." Modares Mechanical Engineering, pp. 199-209. 2017, (In Persian), dor:20.1001.1.10275940.1395.16.11.35.8
[14] J. A. Palacios and R. Ganesan, "Dynamic response of single-walled carbon nanotubes based on various shell theories," Journal of Reinforced Plastics and Composites, vol. 38, no. 9, pp. 413-425, 2019.
[15] M. Kamali Moghaddam, M. Tahani, "Study the effect of environment temperature on mechanical and fracture behavior of carbon nanotubes, " Modares Mechanical Engineering, Vol. 17, No. 3, pp. 87-92, 2017 (in Persian)
doi:20.1001.1.10275940.1396.17.3.42.6
[16] S. Asghar, M. N. Naeem, and M. Hussain, "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory," Physica E: Low-dimensional Systems and Nanostructures, vol. 116, p. 113726, 2020.
[17] M. A. De Rosa, M. Lippiello, A. Onorato, and I. Elishakoff, "Free vibration of single-walled carbon nanotubes using nonlocal truncated Timoshenko-Ehrenfest beam theory," Applied Mechanics, vol. 4, no. 2, pp. 699-714, 2023.
[18] J. Chen et al., "Transverse vibration analysis of double-walled carbon nanotubes in an elastic medium under temperature gradients and electrical fields based on nonlocal Reddy beam theory," Materials Science and Engineering: B, vol. 291, p. 116220, 2023.
[19] I. Ahmadi, M. Davarpanah, J. Sladek, V. Sladek, and M. N. Moradi, "A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 1, p. 11, 2024. doi:10.1007/s40430-023-04580-5
[20] I. Ahmadi, M. N. Moradi, and M. D. Panah, "Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method," Struct. Eng. Mech, vol. 89, no. 2, p. 135, 2024.
doi:10.12989/sem.2024.89.2.000
[21] M. Strozzi, I. E. Elishakoff, M. Bochicchio, M. Cocconcelli, R. Rubini, and E. Radi, "Nonlocal Strain Gradient Anisotropic Elastic Shell Model for Vibration Analysis of Single‒walled Carbon Nanotubes," 2024.
doi: 10.20944/preprints202401.0806.v1
[22] S. K. Jena, S. Pradyumna, and S. Chakraverty, "Thermal vibration of armchair, chiral, and zigzag types of single walled carbon nanotubes using a nonlocal elasticity theory: An analytical approach," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 104, no. 4, p. e202301047, 2024.
doi:10.1002/zamm.202301047
[23] A. Tepe, "Vibration analysis of SWCNTs resting on an elastic foundation using the initial values method: A. Tepe," Journal of Engineering Mathematics, vol. 152, no. 1, p. 20, 2025.
doi:10.1007/s10665-025-10465-4
[24] E. K. Echouai, A. Adri, O. Outassafte, Y. El Khouddar, I. El Hantati, and R. Benamar, "Analysis of the Transverse Vibrations of a Carbon Nanotube Resting on a Winkler Foundation Subjected to Low-Temperature Thermal Load," in Advanced Materials for Sustainable Energy and Engineering: Volume 1: Novel Nanomaterials for Sustainable Energy: Springer, 2025, pp. 41-53.
doi:10.1007/978-3-031-75032-8_4
[25] E. K. Echouai et al., "The Effect of Temperature Change on the Transverse Vibration Frequencies of a Carbon Nanotube," in the Proceedings of the International Conference on Smart City Applications, 2024: Springer, pp. 536-547.
[26] X. Zhang, "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach," Computer methods in applied mechanics and engineering, vol. 191, no. 19-20, pp. 2057-2071, 2002.
[27] A. C. Eringen, "Theories of nonlocal plasticity," International Journal of Engineering Science, vol. 21, no. 7, pp. 741-751, 1983.
[28] C. Shu, Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation. University of Glasgow (United Kingdom), 1991. https://theses.gla.ac.uk/id/eprint/77274
[29] A. Alibeigloo and M. Shaban, "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity," Acta Mechanica, vol. 224, pp. 1415-1427, 2013.
doi:10.1007/s00707-013-0817-2
[30] M. A. Khadimallah, M. Hussain, M. Taj, H. Ayed, and A. Tounsi, "Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory," Advances in Nano Research, vol. 10, no. 2, pp. 165-174, 2021. doi:10.12989/anr.2021.10.2.165