مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ترکیب آنالیز مؤلفه های مستقل و ماشین بردار پشتیبان در تشخیص هوشمند عیب در ماشین های دوار

نویسندگان
1 دانشگاه شهید چمران
2 دانشگاه شهید چمران اهواز
چکیده
هر صنعتی نیازمند برنامه ای پیش گویانه، در جهت بهینه نمودن مدیریت منابع و بهبود اقتصاد کارخانه با کاهش هزینه های غیر ضروری و افزایش سطح ایمنی می باشد. ماشین های دوار از جمله ماشین های رایج در صنعت است و ریشه بیشتر خرابی ها در ماشین های دوار به دلیل خرابی یاتاقان های غلتشی می باشد. ماهیت گذرای ارتعاشات ناشی از عیب در یاتاقان های غلتشی باعث گردیده تا تحلیل ارتعاشات در این تجهیزات با استفاده از تبدیل موجک پیوسته و آنالیز پوش انجام پذیرد. این مقاله به بررسی کاربردی روش ترکیب ماشین بردار پشتیبان و آنالیز مؤلفه های مستقل در تشخیص هوشمند محل و نوع عیب در یاتاقان های غلتشی می پردازد. از آنالیز مؤلفه های مستقل برای استخراج ویژگی و کاهش ابعاد از ویژگی های اصلی استفاده شده است، همچنین از آنالیز مؤلفه های اصلی نیز برای استخراج ویژگی استفاده شده و نتایج آن با آنالیز مؤلفه های مستقل مقایسه گردیده است. در این مقاله، طبقه بندی کننده چند کلاسه ماشین بردار پشتیبان برای طبقه بندی عیب به کار گرفته شده است و از روش اعتبار سنجی متقابل برای انتخاب مقادیر بهینه پارامترهای تابع هسته و ماشین بردار پشتیبان استفاده شده است.
کلیدواژه‌ها

عنوان مقاله English

Combination of independent component analysis and support vector machines for intelligent faults diagnosis of rotating machinery

نویسندگان English

Mohammad hadi Ghafari 1
Afshin Ghanbarzadeh 2
Ali Valipour 2
1 Shahid Chamran University
2 Shahid Chamran University
چکیده English

Any industry needs an efficient predictive plan in order to optimize the management of resources and improve the economy of the plant by reducing unnecessary costs and increasing the level of safety. Rotating machinery is the most common machinery in industry and the root of the faults in rotatingmachinery is often faulty rolling element bearings. Because of a transitory characteristic vibration of bearing faults, combining Continuous wavelet transforms with envelope analysis is applied for signal proseccing. This paper studies the application of independent component analysis and support vector machines to for automated diagnosis of localized faults in rolling element bearings. The independent component analysis is used for feature extraction and data reduction from original features. The principal components analysis is also applied in feature extraction process for comparison with independent component analysis does. In this paper, support vector machines-based multi-class classification is applied to do faults classification process and utilized a cross-validation technique in order to choose the optimal values of kernel parameters.

کلیدواژه‌ها English

Fault Diagnosis
Independent Component Analysis
principal components analysis
Support Vector Machines
Ball Bearing