1. Murray CJL, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. The Lancet. 2015;386(10009):2145-2191. [
Link] [
DOI:10.1016/S0140-6736(15)61340-X]
2. Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine. 1995;20(1):11-19. [
Link] [
DOI:10.1097/00007632-199501000-00003]
3. Jacobs JJ, Andersson GB, Bell JE, Weinstein SL, Dormans JP, Gnatz SM, et al. Spine: Low back and neck pain, in United State bone and joint initiative the burden of musculoskeletal disease in the United States. American Academy of Orthopedic Surgeons. 2011:21-56. [
Link]
4. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. The Lancet. 2012;380(9859):2197-2223. [
Link] [
DOI:10.1016/S0140-6736(12)61689-4]
5. Cheung KMC, Karppinen J, Chan D, Ho DWH, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009;34(9):934-940. [
Link] [
DOI:10.1097/BRS.0b013e3181a01b3f]
6. Wang Y, Videman T, Battié MC. ISSLS prize winner: Lumbar vertebral endplate lesions associations with disc degeneration and back pain history. Spine. 2012;37(17):1490-1496. [
Link] [
DOI:10.1097/BRS.0b013e3182608ac4]
7. Raj PP. Intervertebral disc: Anatomy‐physiology‐pathophysiology‐treatment. Pain Practice. 2008;8(1):18-44. [
Link] [
DOI:10.1111/j.1533-2500.2007.00171.x]
8. Kelsey JL, White AA. Epidemiology and impact of low-back pain. Spine. 1980;5(2):133-142. [
Link] [
DOI:10.1097/00007632-198003000-00007]
9. Natali AN. A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis. Journal of Biomedical Engineering. 1991;13(2):163-168. [
Link] [
DOI:10.1016/0141-5425(91)90063-D]
10. Wagnac E, Arnoux PJ, Garo A, El-Rich M, Aubin CE. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Journal of Biomechanical Engineering. 2011;133(10):101007. [
Link] [
DOI:10.1115/1.4005224]
11. Holmes MH, Mow VC. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. Journal of Biomechanics. 1990;23(11):1145-1156. [
Link] [
DOI:10.1016/0021-9290(90)90007-P]
12. Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. Journal of Biomechanics. 1997;30(11-12):1157-1164. [
Link] [
DOI:10.1016/S0021-9290(97)85606-0]
13. Best BA, Guilak F, Setton LA, Zhu W, Saed-Nejad F, Ratcliffe A, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine. 1994;19(2):212-221. [
Link] [
DOI:10.1097/00007632-199401001-00017]
14. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine. 1994;19(12):1310-1319. [
Link] [
DOI:10.1097/00007632-199406000-00002]
15. Frijns AJH, Huyghe JM, Janssen JD. A validation of the quadriphasic mixture theory for intervertebral disc tissue. International Journal of Engineering Science. 1997;35(15):1419-1429. [
Link] [
DOI:10.1016/S0020-7225(97)00047-5]
16. Wagner DR, Lotz JC. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. Journal of Orthopaedic Research. 2004;22(4):901-909. [
Link] [
DOI:10.1016/j.orthres.2003.12.012]
17. Nikkhoo M, Haghpanahi M, Wang JL, Parnianpour M. A poroelastic finite element model to describe the time-dependent response of lumbar intervertebral disc. Journal of Medical Imaging and Health Informatics. 2011;1(3):246-251. [
Link] [
DOI:10.1166/jmihi.2011.1035]
18. Castro AP, Wilson W, Huyghe JM, Ito K, Alves JL. Intervertebral disc creep behavior assessment through an open source finite element solver. Journal of Biomechanics. 2014;47(1):297-301. [
Link] [
DOI:10.1016/j.jbiomech.2013.10.014]
19. Schmidt H, Bashkuev M, Galbusera F, Wilke HJ, Shirazi-Adl A. Finite element study of human lumbar disc nucleus replacements. Computer Methods in Biomechanics and Biomedical Engineering. 2014;17(16):1762-1776. [
Link] [
DOI:10.1080/10255842.2013.766722]
20. Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Journal of Biomechanics. 2018;70:16-25. [
Link] [
DOI:10.1016/j.jbiomech.2017.10.032]
21. Palmer EI, Lotz JC. The compressive creep properties of normal and degenerated murine intervertebral discs. Journal of Orthopaedic Research. 2004;22(1):164-169. [
Link] [
DOI:10.1016/S0736-0266(03)00161-X]
22. Nikkhoo M, Wang JL, Parnianpour M, El-Rich M, Khalaf K. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading-Ex-vivo and In-Silico investigation. Journal of Biomechanics. 2018;70:26-32. [
Link] [
DOI:10.1016/j.jbiomech.2018.01.026]
23. Mosayebi M, Mojra A. Assessing time-dependent response of intact and degenerated cervical intervertebral discs by employing a poroviscoelastic model based on experimental relaxation data. Iranian Journal of Biomedical Engineering. 2019;13(1):31-44. [Persian] [
Link]
24. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine. 1997;22(24):2823-2833. [
Link] [
DOI:10.1097/00007632-199712150-00005]
25. Holmes MH, Lai WM, Mow VC. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. Journal of Biomechanical Engineering. 1985;107(3):206-218. [
Link] [
DOI:10.1115/1.3138545]
26. Holmes MH. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. Journal Biomechanical Engineering. 1986;108(4):372-381. [
Link] [
DOI:10.1115/1.3138633]
27. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering. 1980;102(1):73-84. [
Link] [
DOI:10.1115/1.3138202]
28. Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics. 1984;17(5):377-394. [
Link] [
DOI:10.1016/0021-9290(84)90031-9]
29. Vakili-Tahami F, Khoshravan M, H. Smit T, Rasoulian A. The anisotropic effect of intervertebral disc tissue in confined compression test. Modares Mechanical Engineering. 2020;20(5):1115-1126. [Persian] [
Link]
30. Schiff JL. The laplace transform: Theory and applications. Berlin: Springer Science & Business Media; 1999. [
Link]
31. Oberhettinger F, Badii L. Tables of Laplace transforms. Berlin: Springer Science & Business Media; 1973. [
Link] [
DOI:10.1007/978-3-642-65645-3]
32. Vakil-Tahami F, Rasoulian A, Mohammad Alizadeh Fard A. Obtaining the creep constitutive parameters for the layers of butt-welded 1.25 Cr0. 5Mo pipe. Modares Mechanical Engineering. 2015;15(9):407-416. [Persian] [
Link]
33. Vakili-Tahami F, Hassannejad Qadim R, Rasoulian A. Pareto discrete-continuous optimization of Sikorsky ASH-3D helicopter main gearbox. Modares Mechanical Engineering. 2015;14(16):170-180. [Persian] [
Link]
34. Saadatmand Hashemi S, Asgari M. Development and calibration of 3D constitutive equations for nonlinear passive multi-axial finite deformations of skeletal muscles. Modares Mechanical Engineering. 2016;16(9):298-306. [Persian] [
Link]
35. Chatterjee S, Hadi AS. Regression analysis by example. Hoboken: John Wiley & Sons; 2006. [
Link] [
DOI:10.1002/0470055464]
36. Vakili-Tahami F, Rasoulian A, Saadatmand Hashemi S. Optimization methods for the weight of Agusta helicopter main gearbox. Journal of Mechanical Engineering. 2018;48(3):347-354. [Persian] [
Link]
37. Saadatmand Hashemi S, Asgari M, Rasoulian A. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2020;234(6):590-602. [
Link] [
DOI:10.1177/0954411920909705]
38. Oehlert GW. A first course in design and analysis of experiments. New York: Freeman WH and Company; 2010. [
Link]
39. Bohm G, Zech G. Introduction to statistics and data analysis for physicists. Hamburg: Desy; 2010. [
Link]
40. Bellavia G, Giuffrida S, Cottone G, Cupane A, Cordone L. Protein thermal denaturation and matrix glass transition in different protein−trehalose−water systems. The Journal of Physical Chemistry B. 2011;115(19):6340-6346. [
Link] [
DOI:10.1021/jp201378y]
41. Chen SF, Chan RC, Read SM, Bromley LA. Viscosity of sea water solutions. Desalination. 1973;13(1):37-51. [
Link] [
DOI:10.1016/S0011-9164(00)80090-9]
42. Torzilli PA. Influence of cartilage conformation on its equilibrium water partition. Journal of Orthopaedic Research. 1985;3(4):473-483. [
Link] [
DOI:10.1002/jor.1100030410]
43. Wilke HJ, Kettler A, Wenger KH, Claes LE. Anatomy of the sheep spine and its comparison to the human spine. The Anatomical Record. 1997;247(4):542-555.
https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P [
Link] [
DOI:10.1002/(SICI)1097-0185(199704)247:43.0.CO;2-P]
44. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schröder R, et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine. 2001;26(9):1028-1037. [
Link] [
DOI:10.1097/00007632-200105010-00008]
45. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: Axial compression mechanics and glycosaminoglycan content. Spine. 2008;33(6):166-173. [
Link] [
DOI:10.1097/BRS.0b013e318166e001]
46. Hoogendoorn RJ, Wuisman PI, Smit TH, Everts VE, Helder MN. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine. 2007;32(17):1816-1825. [
Link] [
DOI:10.1097/BRS.0b013e31811ebac5]
47. Krijnen MR, Mensch D, Van Dieen JH, Wuisman PI, Smit TH. Primary spinal segment stability with a stand-alone cage: In vitro evaluation of a successful goat model. Acta Orthopaedica. 2006;77(3):454-461. [
Link] [
DOI:10.1080/17453670610046398]
48. Emanuel KS, Van Der Veen AJ, Rustenburg C, Smit TH, Kingma I. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. Journal of Biomechanics. 2018;70:10-5. [
Link] [
DOI:10.1016/j.jbiomech.2017.10.010]
49. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Journal of Biomechanics. 2014;47(9):2088-2094. [
Link] [
DOI:10.1016/j.jbiomech.2013.12.021]