1. Horst TA, Rottengruber HS, Seifert M, Ringler J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Applied Energy. 2013;105:293-303. [
Link] [
DOI:10.1016/j.apenergy.2012.12.060]
2. Yang F, Zhang H, Bei C, Song S, Wang E. Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin and tube evaporator. Energy. 2015;91:128-141. [
Link] [
DOI:10.1016/j.energy.2015.08.034]
3. Zhang HG, Wang EH, Fan BY. A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine. Applied Energy. 2013;102:1504-1513. [
Link] [
DOI:10.1016/j.apenergy.2012.09.018]
4. Grelet V, Reiche T, Lemort V, Nadri M, Dufour P. Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks. Applied Energy. 2016;165:878-892. [
Link] [
DOI:10.1016/j.apenergy.2015.11.004]
5. Agudelo AF, García-Contreras R, Agudelo JR, Armas O. Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Applied Energy. 2016;174:201-212. [
Link] [
DOI:10.1016/j.apenergy.2016.04.092]
6. Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy. 2011;36(5):3406-3418. [
Link] [
DOI:10.1016/j.energy.2011.03.041]
7. Li J, Li P, Pei G, Zeb Alvi J, Ji J. Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander. Applied Energy. 2016;165:627-638. [
Link] [
DOI:10.1016/j.apenergy.2015.12.087]
8. Braimakis K, Preißinger M, Brüggemann D, Karellas S, Panopoulos K. Low grade waste heat recovery with subcritical and Supercritical organic Rankine cycle based on natural refrigerants and their binary mixtures. Energy. 2015;88:80-92. [
Link] [
DOI:10.1016/j.energy.2015.03.092]
9. Larsen U, Pierobon L, Haglind F, Gabrielii C. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy. 2013;55:803-812. [
Link] [
DOI:10.1016/j.energy.2013.03.021]
10. Le VL, Feidt M, Kheiri A, Pelloux-Prayer S. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy. 2014;67:513-526. [
Link] [
DOI:10.1016/j.energy.2013.12.027]
11. Freeman J, Hellgardt K, Markides CN. Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK. Applied Energy. 2017;186 Pt 3:291-303. [
Link] [
DOI:10.1016/j.apenergy.2016.04.041]
12. Shu G, Li X, Tian H, Liang X, Wei H, Wang X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Applied Energy. 2014;119:204-217. [
Link] [
DOI:10.1016/j.apenergy.2013.12.056]
13. Di Battista D, Mauriello M, Cipollone R. Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle. Applied Energy. 2015;152:109-120. [
Link] [
DOI:10.1016/j.apenergy.2015.04.088]
14. Song J, Song Y, Gu Cw. Thermodynamic analysis and performance optimization of an organic Rankine cycle (ORC) waste heat recovery system for marine diesel engines. Energy. 2015;82:976-985. [
Link] [
DOI:10.1016/j.energy.2015.01.108]
15. Kim YM, Shin DG, Kim CG, Cho GB. Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources. Energy. 2016;96:482-494. [
Link] [
DOI:10.1016/j.energy.2015.12.092]
16. Freymann R, Strobl W, Obieglo A. The turbosteamer: A system introducing the principle of cogeneration in automotive applications. MTZ worldwide. 2008;69(5):20-27. [
Link] [
DOI:10.1007/BF03226909]
17. Wang EH, Zhang HG, Zhao Y, Fan BY, Wu YT, Mu QH. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine. Energy. 2012;43(1):385-395. [
Link] [
DOI:10.1016/j.energy.2012.04.006]
18. Yang K, Zhang H, Wang Z, Zhang J, Yang F, Wang E, et al. Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions. Energy. 2013;58:494-510. [
Link] [
DOI:10.1016/j.energy.2013.04.074]
19. Shu G, Liu L, Tian H, Wei H, Liang Y. Analysis of regenerative dual-loop organic Rankine cycles (DORCs) used in engine waste heat recovery. Energy Conversion and Management. 2013;76(12):234-243. [
Link] [
DOI:10.1016/j.enconman.2013.07.036]
20. Wang E, Yu Z, Yang F. A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines. Applied Energy. 2017;190:574-590. [
Link] [
DOI:10.1016/j.apenergy.2016.12.122]
21. Tian H, Liu L, Shu G, Wei H, Liang X. Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle. Energy Conversion and Management. 2014;86:764-773. [
Link] [
DOI:10.1016/j.enconman.2014.05.081]
22. Shu G, Liu L, Tian H, Wei H, Xu X. Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Conversion and Management. 2013;74:35-43. [
Link] [
DOI:10.1016/j.enconman.2013.04.037]
23. Maraver D, Royo J, Lemort V, Quoilin S. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Applied Energy. 2014;117:11-29. [
Link] [
DOI:10.1016/j.apenergy.2013.11.076]
24. Glover S, Douglas R, De Rosa M, Zhang X, Glover L. Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery. Energy. 2015;93 Pt 2:1568-1580. [
Link] [
DOI:10.1016/j.energy.2015.10.004]
25. Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy. 2018;231:138-166. [
Link] [
DOI:10.1016/j.apenergy.2018.09.022]
26. Mahmoudi A, Fazli M, Morad MR. A recent review of waste heat recovery by Organic Rankine Cycle. Applied Thermal Engineering. 2018;143:660-675. [
Link] [
DOI:10.1016/j.applthermaleng.2018.07.136]
27. Peris B, Navarro-Esbrí J, Molés F, Mota-Babiloni A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy. 2015;85:534-542. [
Link] [
DOI:10.1016/j.energy.2015.03.065]
28. Koppauer H, Kemmetmüller W, Kugi A. Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines. Applied Energy. 2017;206:329-345. [
Link] [
DOI:10.1016/j.apenergy.2017.08.151]
29. Ziviani D, Beyene A, Venturini M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Applied Energy. 2014;121:79-95. [
Link] [
DOI:10.1016/j.apenergy.2014.01.074]
30. Yang F, Dong X, Zhang H, Wang Z, Yang K, Zhang J, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions. Energy Conversion and Management. 2014;80:243-255. [
Link] [
DOI:10.1016/j.enconman.2014.01.036]
31. Reid RC. The Properties of Gases and Liquids. 4th Edition. Prausnitz JM, Poling BE, contributors. New York: McGraw-Hill; 1987. [
Link]
32. American Society of Heating. 2009 ASHRAE handbook: Fundamentals (SI edition). Owen MS, editor. Atlanta: ASHRAE; 2009. pp. 24-30. [
Link]