1. Kumar Gupta N, Kumar Tiwari A, Kumar Ghosh S. Heat transfer mechanisms in heat pipes using nanofluids–A review. Experimental Thermal and Fluid Science. 2018;90:84-100. [
Link] [
DOI:10.1016/j.expthermflusci.2017.08.013]
2. Naik MT, Ranga Janardana G, Syam Sundar L. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. International Communications in Heat and Mass Transfer. 2013;46:13-21. [
Link] [
DOI:10.1016/j.icheatmasstransfer.2013.05.007]
3. Naik MT, Fahad SS, Syam Sundar L, Singh MK. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science. 2014;57:65-76. [
Link] [
DOI:10.1016/j.expthermflusci.2014.04.006]
4. Azmi WH, Sharma KV, Mamat R, Anuar S. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy procedia. 2014;52:296-307. [
Link] [
DOI:10.1016/j.egypro.2014.07.081]
5. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Syam Sundar L. Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts. Applied Thermal Engineering. 2014;73(1):296-306. [
Link] [
DOI:10.1016/j.applthermaleng.2014.07.060]
6. Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Applied Thermal Engineering. 2014;70(1):896-924. [
Link] [
DOI:10.1016/j.applthermaleng.2014.05.062]
7. Eiamsa-ard S, Kiatkittipong K, Jedsadaratanachai W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Engineering Science and Technology, an International Journal. 2015;18(3):336-350. [
Link] [
DOI:10.1016/j.jestch.2015.01.008]
8. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. International Journal of Heat and Fluid Flow. 2007;28(2):211-219. [
Link] [
DOI:10.1016/j.ijheatfluidflow.2006.04.006]
9. He Y, Men Y, Zhao Y, Lu H, Ding Y. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Applied Thermal Engineering. 2009;29(10):1965-1972. [
Link] [
DOI:10.1016/j.applthermaleng.2008.09.020]
10. Haghshenas M, Nasr Esfahany M, Talaie MR. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer. 2010;37(1):91-97. [
Link] [
DOI:10.1016/j.icheatmasstransfer.2009.08.003]
11. Bejan A. Convective Heat Transfer. 4th Edition. Hoboken: John Wiley & Sons; 2013. [
Link] [
DOI:10.1002/9781118671627]
12. Ounis H, Ahmadi G, McLaughlin JB. Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science. 1991;143(1):266-277. [
Link] [
DOI:10.1016/0021-9797(91)90458-K]
13. Saffman PG. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics. 1965;22(2):385-400. [
Link] [
DOI:10.1017/S0022112065000824]
14. Talbot L, Cheng RK, Schefer RW, Willis DR. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics. 1980;101(4):737-758. [
Link] [
DOI:10.1017/S0022112080001905]
15. Ranz WE, Marshall WRJr. Evaporation from drops, part II. Chemical Engineering Progress. 1952;48(173):173-180. [
Link]
16. Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000. [
Link] [
DOI:10.1017/CBO9780511840531]
17. Nguyen VB, Nguyen QB, Zhang YW, Lim CYH, Khoo BC. Effect of particle size on erosion characteristics. Wear. 2016;348-349:126-137. [
Link] [
DOI:10.1016/j.wear.2015.12.003]
18. Salim SM, Cheah SC. Wall y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists IMECS 2009, March 18-20, 2009, Hong Kong. Hong Kong: Newswood Limited; 2009. [
Link]
19. Patankar SV, Spalding DB. A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer. 1972;15(10):1787-1806. [
Link] [
DOI:10.1016/0017-9310(72)90054-3]
20. Van Doormaal JP, Raithby GD. Enhancements of the simple method for predicting incompressible fluid flows. Numerical Heat Transfer. 1984;7(2):147-163.
https://doi.org/10.1080/01495728408961817 [
Link] [
DOI:10.1080/10407798408546946]
21. Syam Sundar L, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer. 2010;53(7-8):1409-1416. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2009.12.016]
22. Shojaeefard MH, Tahani M. Introduction to turbulent currents and their its modeling. Tehran: Iran University of Science and Technology; 2012. [Persian] [
Link]