Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2667-2677 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaeifard M, Sajedin A, Khalkhali A. Effectiveness of Blade Thickness Distribution on the Turbocharger Turbine Aerostatic Performance. Modares Mechanical Engineering 2019; 19 (11) :2667-2677
URL: http://mme.modares.ac.ir/article-15-19307-en.html
1- Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran
2- Automotive Engineering Faculty, Iran University of Science and Technology, Tehran, Iran
3- Automotive Engineering Faculty, Iran University of Science and Technology, Tehran, Iran , ab_khalkhali@iust.ac.ir
Abstract:   (2745 Views)
Turbocharger turbine blade thickness is restricted by blockage and trailing edge losses and it is exposed to damage due to aerodynamic loads. Proper designing of the blade needs to full recognition of loads on the blade. Therefore, the force from the fluid to the blade should be calculated. Although, thickening the blade results to the more resistance to fracture and cracks, but it affects the aero-structural performance of each section of the blade differently. So, turbocharger turbine blades are exposed to pulsating flow which should be considered in thickness distribution selection. This article reports a comprehensive fluid-solid interaction study of the turbine blades with different thickness distribution which could beneficially investigates the effect of each part thickness on the aerostatic efficiency. Leading edge and trailing edge thickness, maximum thickness and its location, trailing edge shape, hub, and tip blade thickness were the variables which their effects were investigated. Using dual turbocharger turbines leads to lower dissipation of kinetic energy of pulsating charge from the engine. In such turbines, each sector of rotor accepts a different charge from upper and lower entries. The flow distribution of every passage is the difference from the others. Therefore, to the evaluation of the flow, modeling of the entire turbine is needed. 3D CFD model in ANSYS CFX for fluid side and an FEA model in ANSYS Static Structural module for the blade structural responses were used then the results were coupled. Validation was performed by reference to experimental data carried out in imperial college London on a dual turbocharger turbine.
 
Full-Text [PDF 1406 kb]   (2261 Downloads)    
Article Type: Original Research | Subject: Sonic Flow
Received: 2019/04/23 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. 1- Filsinger D, Szwedowicz J, Schäfer O. Approach to unidirectional coupled CFD-FEM analysis of axial turbocharger turbine blades. Journal of. Turbomachinery. 2001;124(1):125-131. [Link] [DOI:10.1115/1.1415035]
2. Thwaites B. Incompressible aerodynamics: An Account of the theory and observation of the steady flow of incompressible fluid past aerofoils, wings, and other bodies. New York: Dover Publications; 1987. [Link]
3. Hoerner SF. Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift. Unknown city: Hoerner Fluid Dynamics; 1992. [Link]
4. Sarraf H, Nouri H, Ravelet F, Bakir F. Experimental study of blade thickness effects on the global and local performances of a controlled vortex designed axial flow fan. Experimental Thermal and Fluid Science. 2011;35(4):684-693. [Link] [DOI:10.1016/j.expthermflusci.2011.01.002]
5. Sarraf C, Djeridi H, Prothin S, Billard JY. Thickness effect of NACA foils on hydrodynamic global parameters, boundary layer states and stall establishment. Journal of Fluids and Structures. 2010;26(4):559-578. [Link] [DOI:10.1016/j.jfluidstructs.2010.02.004]
6. Roelke RJ, Haas JE. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine. Journal of Engineering for Power. 1983;105(2):377-382. [Link] [DOI:10.1115/1.3227426]
7. Meauze G. Overview on blading design methods. In: Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine (France). Blading design for axial turbomachines, AGARD lecture series No. 167. Toronto: AGARD; 1989. [Link]
8. Stow P. Blading design for multi-stage HP compressors. In: Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine (France). Blading design for axial turbomachines, AGARD lecture series No. 167. Toronto: AGARD; 1989. [Link]
9. Bry P. Blading design for cooled high-pressure turbines. In: Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine (France). Blading design for axial turbomachines, AGARD lecture series No. 167. Toronto: AGARD; 1989. [Link]
10. Korakianitis T, Hamakhan IA, Rezaienia MA, Wheeler APS, Avital EJ, Williams JJR. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method. Applied Energy. 2012;89(1):215-227. [Link] [DOI:10.1016/j.apenergy.2011.07.004]
11. Steinert W, Eisenberg B, Starken H. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application. Journal of Turbomachinary. 1991;113(4):583-590. [Link] [DOI:10.1115/1.2929119]
12. Selig MS. Multipoint inverse design of an infinite cascade of airfoils. AIAA Journal. 1994;32(4):774-782. [Link] [DOI:10.2514/3.12052]
13. Dang T, Damle S, Qiu X. Euler-based inverse method for turbomachine blades, Part 2: Three-dimensional flows. AIAA Journal. 2000;38(11):2007-2013. https://doi.org/10.2514/3.14644 [Link] [DOI:10.2514/2.879]
14. Phillipsen B. A simple inverse cascade design method. ASME Proceedings, Turbomachinery. 2005;6:603-613. [Link] [DOI:10.1115/GT2005-68575]
15. Liu GL. A new generation of inverse shape design problem in aerodynamics and aerothermoelasticity: Concepts, theory and methods. Aircraft Engineering Aerospace Technology. 2000;72(4):334-344. [Link] [DOI:10.1108/00022660010340141]
16. Korakianitis TP. Design of Airfoils and Cascades of Airfoils. AIAA Journal.1989;27(4):455-461. [Link] [DOI:10.2514/3.10133]
17. Dunham J. A parametric method of turbine blade profile design. ASME Proceedings, General. 1947;1B:V01BT02A037. [Link]
18. Morán J. An introduction to theoretical and computational aerodynamics. Hoboken: Wiley; 1984. [Link]
19. Aungier RH. Turbine aerodynamics: Axial-flow and radial-flow turbine design and analysis. New York: ASME; 2006. [Link] [DOI:10.1115/1.802418]
20. Aungier RH. Centrifugal compressors: A strategy for aerodynamic design and analysis. New York: ASME; 2000. [Link]
21. Modir Shanechi M, Odabaee M, Hooman K. Optimisation of a high pressure ratio radial-inflow turbine: Coupled CFD-FE analysis. ASME Proceedings, Multidisciplinary Design Approaches, Optimization and Uncertainty Quantification. 2015;2C:V02CT45A003. [Link] [DOI:10.1115/GT2015-42208]
22. Vanti F, Pinelli L, Arnone A, Schneider A, Astrua P, Puppo E. Aeroelastic optimization of an industrial compressor rotor blade geometry. ASME Proceedings, Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification. 2018;2D:V02DT46A016. [Link] [DOI:10.1115/GT2018-76474]
23. Ma C, Huang Z, Qi M. Investigation on the forced response of a radial turbine under aerodynamic excitations. Journal of Thermal Science. 2016;25(2):130-137. [Link] [DOI:10.1007/s11630-016-0843-1]
24. Wang L, Quant R, Kolios A. Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering and Industrial Aerodynamics. 2016;158:11-25. [Link] [DOI:10.1016/j.jweia.2016.09.006]
25. Dai L, Zhou Q, Zhang Y, Yao S, Kang S, Wang X. Analysis of wind turbine blades aeroelastic performance under yaw conditions. Journal of Wind Engineering and Industrial Aerodynamics. 2017;171:273-287. [Link] [DOI:10.1016/j.jweia.2017.09.011]
26. Rafiee R, Tahani M, Moradi M. Simulation of aeroelastic behavior in a composite wind turbine blade. Journal of Wind Engineering and Industrial Aerodynamics. 2016;151:60-69. [Link] [DOI:10.1016/j.jweia.2016.01.010]
27. Carrión M, Steijl R, Woodgate M, Barakos GN, Munduate X, Gomez-Iradi S. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method. Journal of Fluids and Structures. 2014;50:392-415. [Link] [DOI:10.1016/j.jfluidstructs.2014.06.029]
28. Ok Yu D, Kwon OJ. Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method. Renewable Energy. 2014;70:184-196. [Link] [DOI:10.1016/j.renene.2014.03.033]
29. Filsinger D, Schäfer O. Numerical calculation of low order blade excitation in pulse charged axial turbocharger turbines and its experimental assessment. ASME Proceedings | Structures and Dynamics: Unsteady Aerodynamics and Aeromechanics.2003;4:311-320. [Link] [DOI:10.1115/GT2003-38182]
30. Senn SM, Seiler M, Schaefer O. Blade excitation in pulse-charged mixed-flow turbocharger turbines. Journal of Turbomachinery. 2010;133(2):021012. [Link] [DOI:10.1115/1.4001186]
31. Filsinger D, Schäfer O. Numerical calculation of low order blade excitation in pulse charged axial turbocharger turbines and its experimental assessment. ASME Proceedings, Structures and Dynamics: Unsteady Aerodynamics and Aeromechanics. 2003;4:311-320. [Link] [DOI:10.1115/GT2003-38182]
32. Filsinger D, Frank CH, Schäfer O. Practical use of unsteady CFD and FEM forced response calculation in the design of axial turbocharger turbines. ASME Proceedings, Structures and Dynamics. 2005;4:601-612. [Link] [DOI:10.1115/GT2005-68439]
33. Copeland CD, Newton P, Seiler M, Martinez-Botas RF. The effect of unequal admission on the performance and loss generation in a double-entry turbocharger turbine. Journal of Turbomachinery. 2012;134(2):021004. [Link] [DOI:10.1115/1.4003226]
34. Copeland CD. The Evaluation of steady and pulsating flow performance of a double-entry turbocharger turbine [Dissrtation]. London: Imperial College London; 2010. [Link]
35. Logan E, Ramendra R, editors. Handbook of Turbo machinery. New York : Marcel Dekker; 2003. [Link]
36. ANSYS. CFX 14.0 Theory guide [Internet]. Canonsburg: ANSYS; 2011 [Unknown cited]. Available from: https://kargosha.com/file/attach/201705/2812.pdf [Link]
37. Ye ZQ. A systematic computational design system for turbine cascades, airfoil geometry and blade-to-blade analysis, trans. ASME Proceedings, Turbomachinery. 1984;(83-JPGC-GT-7):V001T03A003. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.