Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1085-1093 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbasnejad G, Tale-Masouleh M. Determination of Optimal Wrench-closure Configuration of Reconfigurable Cable-driven Parallel Robots to Move on a Given Trajectory. Modares Mechanical Engineering 2019; 19 (5) :1085-1093
URL: http://mme.modares.ac.ir/article-15-21025-en.html
1- Machine Intelligence & Robotics Department, Electrical & Computer Engineering Faculty, University of Tehran, Tehran, Iran
2- Machine Intelligence & Robotics Department, Electrical & Computer Engineering Faculty, University of Tehran, Tehran, Iran , t.masouleh@ut.ac.ir
Abstract:   (7809 Views)
Because of the fact that cable-driven parallel robot ​possess limited moment resisting/exerting capabilities and relatively small orientation workspaces, in this paper, a method for determination of optimal configuration of reconfigurable cable-driven parallel robots is presented to improve their performance. In such robots, actuators can move the cable attachment points on the base with respect to the motion of the end-effector in its trajectory. In the determined configuration, any external wrench on the end-effector can be balanced, using cable forces for all poses near to a pose of the robot. The largest wrench-closure circular zone centered at an arbitrary point of a trajectory for a given range of orientation around a reference orientation of the end-effector is computed. Taking the area of such zone into account and with the aim of enlarging them, the optimal configuration of the robot is determined. The optimal configuration is found by appropriately changing the position of the moving attachment points on the base of the robots. By applying this procedure on a number of points on a given trajectory iteratively, proper actuation schemes are obtained. In this paper, this method is utilized for reconfigurable planar cable-driven parallel robots and the quality of their actuation schemes is compared with the robots with fixed cable attachment points on
Full-Text [PDF 614 kb]   (2735 Downloads)    
Article Type: Original Research | Subject: Robotic
Received: 2018/05/19 | Accepted: 2018/11/22 | Published: 2019/05/1

References
1. Ghanbari M, Moosavi M, Moosavian SA, Zarafshan P. Modeling, optimal path planning and tracking control of a cable driven redundant parallel robot. Modares Mechanical Engineering. 2017;17(4):67-77. [Persian] [Link]
2. Aflakiyan A, Tale Masouleh M, Bayani H, Sadeghian R. Path planning of cable driven parallel robots in the presence of dynamic obstacles via potential field using computed torque control method. Modares Mechanical Engineering. 2016;16(4):109-118. [Persian] [Link]
3. Bayani H, Tale Masouleh M, Kalhor A. An experimental study on the vision-based control and identification of planar cable-driven parallel robot. Robotics and Autonomous Systems. 2016;75(Part B):187-202. [Link]
4. Bamdad M, Taheri F. Improvement of end-effector orientability capability in a serial-parallel cable robot. Modares Mechanical Engineering. 2015;15(7):336-344. [Persian] [Link]
5. Taghirad H, Khalilpour A, Aliyari M, Tale Masouleh M. Appling evolutionary algorithms in multi objective optimization of planar cable-driven parallel robots. Modares Mechanical Engineering. 2014;14(5):44-54. [Persian] [Link]
6. Abbasnejad G, Carricato M. Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables. IEEE Transactions on Robotics. 2015;31(2):468-478. [Link] [DOI:10.1109/TRO.2015.2393173]
7. Abbasnejad G, Carricato M. Real solutions of the direct geometrico-static problem of under-constrained cable-driven parallel robots with 3 cables: A numerical investigation. Meccanica. 2012;47(7):1761-1773. [Link] [DOI:10.1007/s11012-012-9552-3]
8. Gouttefarde M, Gosselin CM. Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Transactions on Robotics. 2006;22(3):434-445. [Link] [DOI:10.1109/TRO.2006.870638]
9. Rosati G, Zanotto D, Agrawal SK. On the design of adaptive cable-driven systems. Journal of Mechanisms and Robotics. 2011;3(2):021004. [Link] [DOI:10.1115/1.4003580]
10. Zanotto D, Rosati G, Minto S, Rossi A. Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Transactions on Robotics. 2014;30(4):974-479. [Link] [DOI:10.1109/TRO.2014.2301532]
11. Zhou X, Jun SK, Krovi V. Tension distribution shaping via reconfigurable attachment in planar mobile cable robots. Robotica. 2014;32(2):245-256. [Link] [DOI:10.1017/S0263574713001008]
12. Nguyen DQ, Gouttefarde M, Company O, Pierrot F. On the analysis of large-dimension reconfigurable suspended cable-driven parallel robots. 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June, 2014, Hong Kong, China. Piscataway: IEEE; 2014. [Link]
13. Abbasnejad G, Yoon J, Lee H. Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mechanism and Machine Theory. 2016;99:1-18. [Link] [DOI:10.1016/j.mechmachtheory.2015.12.009]
14. Anson M, Alamdari A, Krovi V. Orientation workspace and stiffness optimization of cable-driven parallel manipulators with base mobility. Journal of Mechanisms and Robotics. 2017;9(3):031011. [Link] [DOI:10.1115/1.4035988]
15. Roberts RG, Graham T, Lippitt T. On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. Journal of Robotic Systems. 1998;15(10):581-597. https://doi.org/10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P [Link] [DOI:10.1002/(SICI)1097-4563(199810)15:103.0.CO;2-P]
16. Verhoeven R. Analysis of the workspace of tendon-based Stewart platforms [Dissertation]. Duisburg: Duisburg Essen University; 2004. [Link]
17. Gallina P, Rosati G. Manipulability of a planar wire driven haptic device. Mechanism and Machine Theory. 2002;37(2):215-228. [Link] [DOI:10.1016/S0094-114X(01)00076-3]
18. Abbasnejad G, Daniali HM, Kazemi SM. A new approach to determine the maximal singularity-free zone of 3-RPR planar parallel manipulator. Robotica. 2012;30(6):1005-1012. [Link] [DOI:10.1017/S0263574711001238]
19. Li H, Gosselin CM, Richard MJ. Determination of maximal singularity-free zones in the workspace of planar three-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory. 2006;41(10):1157-1167. [Link] [DOI:10.1016/j.mechmachtheory.2005.12.003]
20. Karimi A, Tale Masouleh M, Cardou P. Singularity-free workspace analysis of general 6-UPS parallel mechanisms via convex optimization. Mechanism and Machine Theory. 2014;80:17-34. [Link] [DOI:10.1016/j.mechmachtheory.2014.04.005]
21. Farzaneh Kaloorazi MH, Tale Masouleh M, Caro S. Determination of the maximal singularity-free workspace of 3-DOF parallel mechanisms with a constructive geometric approach. Mechanism and Machine Theory. 2015;84:25-36. [Link] [DOI:10.1016/j.mechmachtheory.2014.10.003]
22. Zamani Fekri M, Zarei M, Tale Masouleh M, Yazdani M. Optimal design and fabrication of a 4-DOF quattrotaar parallel robot with singularity-free workspace by ABC and PSO algorithms. Modares Mechanical Engineering. 2016;16(6):149-158. [Persian] [Link]
23. Anvari Z, Varshovi-Jaghargh P, Tale Masouleh M. The mechanical interference-free workspace of the planar parallel robots using geometric approach. Modares Mechanical Engineering. 2017;17(4):101-110. [Persian] [Link]
24. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, 27 November-1 December, 1995, Perth, Australia. Piscataway: IEEE; 1995. [Link] [DOI:10.1109/ICNN.1995.488968]
25. Ebrahimi I, Carretero JA, Boudreau R. Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica. 2008;26(3):405-413. [Link] [DOI:10.1017/S0263574708004256]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.