1. Hentout A, Messous MA, Bouzouia B. Fault-tolerant multi-agent control architecture for autonomous mobile manipulators: Simulation results. Computers & Electrical Engineering. 2015;43:238-256. [
Link] [
DOI:10.1016/j.compeleceng.2015.03.002]
2. Zarafshan P, Moosavian SAA. Adaptive hybrid suppression control of a wheeled mobile robot with flexible solar panels. Modares Mechanical Engineering. 2013;13(5):130-143. [Persian] [
Link]
3. Chen Y, Lu J, Yu X, Hill DJ. Multi-agent systems with dynamical topologies: Consensus and applications. IEEE Circuits and Systems Magazine. 2013;13(3):21-34. [
Link] [
DOI:10.1109/MCAS.2013.2271443]
4. Du H, Li Sh, Qian C. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control. 2011;56(11):2711-2717. [
Link] [
DOI:10.1109/TAC.2011.2159419]
5. Chen D, Dong Sh. The application of multi-agent system in robot football game. Proceedings The 2nd International Conference on Computer and Applications. Unknown City: SERSC; 2013. p. 183-187. [
Link]
6. Amini A, Sojoodi M, Ozgoli S. Decentralized dynamic output feedback controller design for consensus in multi-agent system of single link manipulators with flexible joint. Modares Mechanical Engineering. 2015;14(15):75-84. [Persian] [
Link]
7. Zhao LW, Hua CC. Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dynamics. 2014;75(1-2):311-318. [
Link] [
DOI:10.1007/s11071-013-1067-5]
8. Rahimi N, Binazadeh T. Distributed robust consensus control for nonlinear leader-follower multi-agent systems based on adaptive observer-based sliding mode. Journal of Vibration and Control. 2019;25(1):109-121. [
Link] [
DOI:10.1177/1077546318772239]
9. Ren CE, Philip Chen CL. Sliding mode leader-following consensus controllers for second-order non-linear multi-agent systems. IET Control Theory & Applications. 2015;9(10):1544-1552. [
Link] [
DOI:10.1049/iet-cta.2014.0523]
10. Yu Sh, Long X. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica. 2015;54:158-165. [
Link] [
DOI:10.1016/j.automatica.2015.02.001]
11. Nuño E, Valle D, Sarras I, Basañez L. Leader-follower and leaderless consensus in networks of flexible-joint manipulators. European Journal of Control. 2014;20(5):249-258. [
Link] [
DOI:10.1016/j.ejcon.2014.07.003]
12. Zhao X, Ma C, Xing X, Zheng X. A stochastic sampling consensus protocol of networked Euler-Lagrange systems with application to two-link manipulator. IEEE Transactions on Industrial Informatics. 2015;11(4):907-914. [
Link] [
DOI:10.1109/TII.2015.2435692]
13. Cambera JC, Feliu-Batlle V. Input-state feedback linearization control of a single-link flexible robot arm moving under gravity and joint friction. Robotics and Autonomous Systems. 2017;88:24-36. [
Link] [
DOI:10.1016/j.robot.2016.11.019]
14. Cheng J, Wang B, Park JH, Kang W. Sampled-data reliable control for T-S fuzzy semi-Markovian jump system and its application to single-link robot arm model. IET Control Theory & Applications. 2017;11(12):1904-1912. [
Link] [
DOI:10.1049/iet-cta.2016.1462]
15. Liu L, Wang G, Li Z. New stabilization of stochastic delayed jumping systems realized by a partially delay-dependent controller. Chinese Control and Decision Conference (CCDC), 28-30 May 2016, Yinchuan, China. Piscataway: IEEE; 2016. [
Link] [
DOI:10.1109/CCDC.2016.7530989]
16. Zhang L, Messous MA, Bouzouia B. New results on finite-time stabilization for stochastic systems with time-varying delay. IEEE Transactions on Systems Man and Cybernetics Systems. 2018;16(2):649-658. [
Link] [
DOI:10.1007/s12555-017-0020-7]
17. Min H, Xu Sh, Zhang B, Duan N. Practically finite-time control for nonlinear systems with mismatching conditions and application to a robot system: Simulation results. Computers & Electrical Engineering. 2017. [
Link] [
DOI:10.1109/TSMC.2017.2748227]
18. Esapour S, Ranjbar Noei A, Sadati Rostami SJ. Adaptive wavelet neural network tracking control of a single-link robot arm with backlash input. Modares Mechanical Engineering. 2018;18(8):37-44. [Persian] [
Link]
19. Zhang H, Lewis FL, Qu Z. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Transactions on Industrial Electronics. 2012;59(7):3026-3041. [
Link] [
DOI:10.1109/TIE.2011.2160140]
20. Shen M, Ye D. Improved fuzzy control design for nonlinear Markovian-jump systems with incomplete transition descriptions. Fuzzy Sets and Systems. 2013;217:80-95. [
Link] [
DOI:10.1016/j.fss.2012.11.014]
21. Ghasemi I, Ranjbar Noei A, Sadati Rostami SJ, Optimal fractional order iterative learning control for single-link robot control. Modares Mechanical Engineering. 2015;15(10):259-268. [Persian] [
Link]
22. Song MK, Park JB, Joo YH. Robust stabilization for uncertain Markovian jump fuzzy systems based on free weighting matrix method. Fuzzy Sets and Systems. 2015;277:81-96. [
Link] [
DOI:10.1016/j.fss.2015.02.004]
23. Yang Y, Xu C, Meng Q, Tan J. An event-triggered ADP controller for single link robot arm system based on output position. Chinese Control and Decision Conference (CCDC), 9-11 June 2018, Shenyang, China. Piscataway: IEEE; 2018. [
Link] [
DOI:10.1109/CCDC.2018.8407504]
24. Sheng L, Gao M. Stabilization for Markovian jump nonlinear systems with partly unknown transition probabilities via fuzzy control. Fuzzy Sets and Systems. 2010;161(21):2780-2792. [
Link] [
DOI:10.1016/j.fss.2010.07.007]
25. Palm R, Driankov D. Fuzzy switched hybrid systems-modeling and identification. Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell, 17-17 Sept 1998, Gaithersburg, MD, USA. Piscataway: IEEE; 1998. [
Link]
26. Leena G, Datta KB, Ray G. A Class of stabilizing PID controllers for position control of single-link robot. International Journal of Control and Automation. 2011;4(3):127-141. [
Link]
27. Hao LY, Yang GH. Fault tolerant control for a class of uncertain chaotic systems with actuator saturation. Nonlinear Dynamics. 2013;73(4):2133-2147. [
Link] [
DOI:10.1007/s11071-013-0929-1]
28. Mohammadpour S, Binazadeh T. Robust adaptive synchronization of chaotic systems with nonsymmetric input saturation constraints. Journal of Computational and Nonlinear Dynamics. 2017;13(1):011005. [
Link] [
DOI:10.1115/1.4037672]
29. Hu Q. Adaptive output feedback sliding-mode manoeuvring and vibration control of flexible spacecraft with input saturation. IET Control Theory & Applications. 2008;2(6):467-478. [
Link] [
DOI:10.1049/iet-cta:20070099]
30. Khalil HK. Nonlinear control. 2nd Edition. Upper Saddle River: Prentice Hall; 1989. pp. 305-320. [
Link]