1. Duff RE, Blackwell AN. Explosive driven shock tubes. Review of Scientific Instruments. 1966;37(5):579-586. [
Link] [
DOI:10.1063/1.1720256]
2. Davis WC, Salyer TR, Jackson SI, Aslam TD. Explosive-driven shock waves in argon. The 13th International Detonation Symposium, 2006 July 23-28, Norfolk, Virginia. Arlington: Office of Naval Research; 2006. pp. 1035-1044. [
Link]
3. Courtney AC, Andrusiv LP, Courtney MW. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects. Review of Scientific Instruments. 2012;83(4):045111. [
Link] [
DOI:10.1063/1.3702803]
4. Stotz I, Lamanna G, Hettrich H, Weigand B, Steelant J. Design of a double diaphragm shock tube for fluid disintegration studies. Review of Scientific Instruments. 2008;79(12):125106. [
Link] [
DOI:10.1063/1.3058609]
5. Colombo M, Di Prisco M, Martinelli P. A new shock tube facility for tunnel safety. Experimental Mechanics. 2011;51(7):1143-1154. [
Link] [
DOI:10.1007/s11340-010-9430-7]
6. Furukawa T, Aochi T, Sasoh A. Expansion tube operation with thin secondary diaphragm. AIAA Journal. 2007;45(1):214-217. [
Link] [
DOI:10.2514/1.23846]
7. Glass II, Patterson GN. A theoretical and experimental study of shock-tube flows. Journal of the Aeronautical Sciences. 1955;22(2):73-100. [
Link] [
DOI:10.2514/8.3282]
8. Hsu UK. Numerical and experimental investigation of a supersonic flow field around solid fuel on an inclined flat plate. Modelling and Simulation in Engineering. 2009;2009:4. [
Link] [
DOI:10.1155/2009/823874]
9. Mediavilla Varas J, Philippens M, Meijer SR, Van Den Berg AC, Sibma PC, Van Bree JL, et al. Physics of IED blast shock tube simulations for mTBI research. Frontiers in Neurology. 2011;2:58. [
Link] [
DOI:10.3389/fneur.2011.00058]
10. Kosing OE, Skews BW. An investigation of high-speed forming of circular plates in a liquid shock tube. International Journal of Impact Engineering. 1998;21(9):801-816. [
Link] [
DOI:10.1016/S0734-743X(98)00033-5]
11. Gardner KD, John AG, Lu FK. Development of a shock loading simulation facility. Shock. 2005;1000(2):3. [
Link]
12. Pankow M, Waas AM, Bednarcyk B. Blast loading of epoxy panels using a shock tube [Report]. Washington, D.C: NASA; 2010 Dec. Report NO: NASA/TM-2010-216941, E-17545. Contract NO.: WBS 698259.02.07.03. [
Link]
13. Justusson B, Pankow M, Heinrich C, Rudolph M, Waas AM. Use of a shock tube to determine the bi-axial yield of an aluminum alloy under high rates. International Journal of Impact Engineering. 2013;58:55-65. [
Link] [
DOI:10.1016/j.ijimpeng.2013.01.012]
14. Courtney E, Courtney A, Courtney M. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel. Defence Technology. 2014;10(2):245-250. [
Link] [
DOI:10.1016/j.dt.2014.04.003]
15. Andreotti R, Colombo M, Guardone A, Martinelli P, Riganti G, Di Prisco M. Performance of a shock tube facility for impact response of structures. International Journal of Non-Linear Mechanics. 2015;72:53-66. [
Link] [
DOI:10.1016/j.ijnonlinmec.2015.02.010]
16. Anderson Jr JD. Fundamentals of aerodynamics. New York: McGraw-Hill; 2003. p. 912. [
Link]
17. Smith PD, Hetherington JG. Blast and ballistic loading of structures. Oxford: Butterworth-Heinemann; 1994. [
Link]
18. Sorensen HK. ABAQUS theory manual. Version 6.2 [Software]. 2001 [Unknown cited]. Available from: Not Found [
Link]
19. Beusink M. Measurements and simulations on the (dynamic) properties of aluminium alloy AA6060 [Dissertation]. Eindhoven: Eindhoven University of Technology; 2011. [
Link]