Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1855-1864 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamshid A, Vahdat Azad N. Flutter Analysis of CNT-Reinforced Functionally Graded Composite Wing with Attached Mass. Modares Mechanical Engineering 2019; 19 (8) :1855-1864
URL: http://mme.modares.ac.ir/article-15-21895-en.html
1- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Shahid Sattari University of Aeronatical Engineering, Tehran, Iran
Abstract:   (7195 Views)
In this study, flutter of functionally graded carbon nanotube (FG-CNT)-reinforced composite wing carrying a distributed patch mass is analyzed and presented. Wing is modeled by a rectangular plate with cantilever boundary conditions in supersonic flow. To evaluate the displacement fields of the moderately thick plate, First-order shear deformation theory (FSDT) and chebyshev polynomials series are applied. In supersonic airflow simulation effect, the first-order piston theory was used and differential equation governing the system was adapted, using the Hamilton principle. In this study, 4 different types of CNT are considered through the thickness. CNT distribution patterns are as uniform, decreasing, decreasing-increasing, and increasing-decreasing. Finally, the effects of size, mass, and location of the distributed patch mass as well as various CNT distributions and fiber orientation angle in a two-layer anti-symmetric composite on flutter boundaries were studies. In comparisons with the results of previous studies, a good agreement is observed. The results showed that the flutter boundary reduced with increasing mass ratio and increased in longer length of added mass. By increasing orientation's angle of CNT fiber of anti-symmetric composite, the flutter boundary is raised and has different behavior for different distribution patterns.
Full-Text [PDF 1305 kb]   (2703 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2018/06/10 | Accepted: 2019/01/19 | Published: 2019/08/12

1. Lei ZX, Zhang LW, Liew KM. Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Composite Structures. 2015;127:245-259. [Link] [DOI:10.1016/j.compstruct.2015.03.019]
2. Ghorbanpour Arani A, Kolahchi R, Mosallaie Barzoki AA, Mozdianfard MR, Noudeh Farahani SM. Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science. 2013;227(4):862-879. [Link] [DOI:10.1177/0954406212453808]
3. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56-58. [Link] [DOI:10.1038/354056a0]
4. Liew KM, Lei ZX, Zhang LW. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures. 2015;120:90-97. [Link] [DOI:10.1016/j.compstruct.2014.09.041]
5. Zhang LW, Song ZG, Liew KM. Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Computer Methods in Applied Mechanics and Engineering. 2016;300:427-441. [Link] [DOI:10.1016/j.cma.2015.11.029]
6. Zhu P, Lei ZX, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures. 2012;94(4):1450-1460. [Link] [DOI:10.1016/j.compstruct.2011.11.010]
7. Nami MR, Janghorban M. Free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on three-dimensional elasticity theory via differential quadrature method. Advanced Composite Materials. 2015;24(5):439-450. [Link] [DOI:10.1080/09243046.2014.901472]
8. Kiani Y. Free vibration of FG-CNT reinforced composite skew plates. Aerospace Science and Technology. 2016;58:178-188. [Link] [DOI:10.1016/j.ast.2016.08.018]
9. Song ZG, Zhang LW, Liew KM. Aeroelastic analysis of CNT reinforced functionally graded composite panels in supersonic airflow using a higher-order shear deformation theory. Composite Structures. 2016;141:79-90. [Link] [DOI:10.1016/j.compstruct.2016.01.005]
10. Natarajan S, Kaleeswaran K, Manickam G. Functionally graded material panel flutter by cell-based smoothed finite elements. Journal of Coupled Systems and Multiscale Dynamics. 2013;1(2):205-215. [Link] [DOI:10.1166/jcsmd.2013.1014]
11. Fazelzadeh SA, Pouresmaeeli S, Ghavanloo E. Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow. Computer Methods in Applied Mechanics and Engineering. 2015;285;714-729. [Link] [DOI:10.1016/j.cma.2014.11.042]
12. Sankar A, Natarajan S, Ben Zineb T, Ganapathi M. Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higher-order structural theory. Composite Structures. 2015;127:340-355. [Link] [DOI:10.1016/j.compstruct.2015.02.047]
13. Song ZG, Li FM. Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dynamics. 2014;76(1):57-68. [Link] [DOI:10.1007/s11071-013-1110-6]
14. Song ZG, Li FM, Zhang W. Active flutter and aerothermal postbuckling control for nonlinear composite laminated panels in supersonic airflow. Journal of Intelligent Material Systems and Structures. 2015;26(7):840-857. [Link] [DOI:10.1177/1045389X14535013]
15. Lin H, Cao D, Xu Y. Vibration characteristics and flutter analysis of a composite laminated plate with a store. Applied Mathematics and Mechanics. 2018;39(2):241-260. [Link] [DOI:10.1007/s10483-018-2297-6]
16. Alibeigloo A, Shakeri M, Kari MR. Free vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory. Ocean Engineering. 2008;35(2):183-190. [Link] [DOI:10.1016/j.oceaneng.2007.09.002]
17. Fazelzadeh SA, Marzocca P, Rashidi E, Mazidi A. Effects of rolling maneuver on divergence and flutter of aircraft wing store. Journal of Aircraft. 2010;47(1):64-70. [Link] [DOI:10.2514/1.40463]
18. Vahdat Azad N, Vahdat Azad A. Investigation of attached mass effect on flutter speed of cantilever composite plate in supersonic flow. Journal of Science and Technology of Composites. 2017;4(2):179-188. [Persian] [Link]
19. Zhang LW, Lei ZX, Liew KM. Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Composite Structures. 2015;120:189-199 . [Link] [DOI:10.1016/j.compstruct.2014.10.009]
20. Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A Applied Science and Manufacturing. 2005;36(11):1555-1561. [Link] [DOI:10.1016/j.compositesa.2005.02.006]
21. Efraim E, Eisenberger M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. Journal Sound and Vibration. 2007;299(4-5):720-738. [Link] [DOI:10.1016/j.jsv.2006.06.068]
22. Song ZG, Li FM, Carrera E, Hagedorn P. A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects. Journal of Sound and Vibration. 2018;414:218-232. [Link] [DOI:10.1016/j.jsv.2017.11.008]
23. Zhou D, Cheung YK, Au FTK, Lo SH. Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. International Journal of Solids and Structures. 2002;39(26):6339-6353. [Link] [DOI:10.1016/S0020-7683(02)00460-2]
24. Fang JS, Zhou D. Free vibration analysis of rotating axially functionally graded tapered Timoshenko beams. International Journal of Structural Stability and Dynamics. 2016;16:1550007. [Link] [DOI:10.1142/S0219455415500078]
25. Fox L, Parker IB. Chebyshev polynomials in numerical analysis. Oxford Mathematical Handbooks. Oxford: Oxford U.P.; 1968. [Link]
26. Birman V, Librescu L. Supersonic flutter of shear deformable laminated composite flat panels. Journal of Sound and Vibration. 1990;139(2):265-275. [Link] [DOI:10.1016/0022-460X(90)90887-6]
27. Shin WH, Oh IK, Han JH, Lee I. Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments. Journal of Sound and Vibration. 2006;296(1-2):99-116. [Link] [DOI:10.1016/j.jsv.2006.01.068]
28. Shen HS. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: Axially-loaded shells. Composite Structures. 2011;93(8):2096-2108. [Link] [DOI:10.1016/j.compstruct.2011.02.011]
29. Dowell E, Ye W. Limit cycle oscillation of a fluttering cantilever plate. AIAA Journal. 1991;29(11):1929-1936. [Link] [DOI:10.2514/3.10821]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.