1. Sutton GP, Biblarz O. Rocket propulsion elements. 7th Edition. New York: John Wiley & Sons; 2001. [
Link]
2. Hollstein HJ. Jet tab thrust vector control. Journal of Spacecraft and Rockets. 1965;2(6):927-930. [
Link] [
DOI:10.2514/3.28316]
3. Eatough R. Jet tab thrust vector control system demonstration. 7th Propulsion Joint Specialist Conference, 14-18 June, 1971, Salt Lake City, Utah, USA. Reston: AIAA; 1971. [
Link] [
DOI:10.2514/6.1971-752]
4. Simmons JM, Gourlay CM, Leslie BA. Flow generated by ramp tabs in a rocket nozzle exhaust. Journal of Propulsion and Power. 1987;3(1):93-95. [
Link] [
DOI:10.2514/3.22959]
5. Phanindra BC, Rathakrishnan E. Corrugated tabs for supersonic jet control. AIAA Journal. 2010;48(2):453-465. [
Link] [
DOI:10.2514/1.44896]
6. Hileman J, Samimy M. Effects of vortex generating tabs on noise sources in an ideally expanded mach 1.3 jet. International Journal of Aeroacoustics. 2003;2(1):35-63. [
Link] [
DOI:10.1260/147547203322436935]
7. Živković SŽ, Milinović MM, Stefanović PL, Pavlović PB, Gligorijević NI. Experimental and simulation testing of thermal loading in the jet tabs of a thrust vector control system. Thermal Science. 2016;20(Suppl 1):S275-286. [
Link] [
DOI:10.2298/TSCI150914208Z]
8. Heidari MR, Noorolahi A. Liquid injection thrust vector control and its effective parameters. Research and development of High-Energy Materials. 2008;3(1):15-24. [Persian] 12- hojaji M, Tahani M, Salehifar M, Dartoomian A. Performance analysis of secondary injection thrust vector control. The 1st International and 3rd National Conference of Irainain Aerospace Propultion Association, 22-23 October, 2014, Isfahan, Iran. Shahinshahr: Malek-Ashtar University of Technology; 2014. [Persian] 13- Salehifar M, Dartoomian A, hojaji M, Tahani M. Comparison of 2D and 3D analysis of secondary injection thrust vector control. The 8th Student Conference on Mechanical Engineering, 7-9 October, 2014, Rasht, Iran. Rasht: University of Guilan; 2014. [Persian] 16- Tahani M, hojaji M, Salehifar M, Dartoomian A. Numerical investigation of sonic jet injection effects on flowfield structure and thrust vector control performance in a supersonic nozzle. Modares Mechanical Engineering. 2015;15(8):175-186. [Persian] 17- Deng R, Setoguchi T, Kim HD. Large eddy simulation of shock vector control using bypass flow passage. International Journal of Heat and Fluid Flow. 2016;62(Part B):474-481. 24- Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [
Link]
9. Guhse RD, Doyle Thompson H. Some aspects of gaseous secondary injection with application to thrust vector control. Journal of Spacecraft and Rockets. 1972;9(5):291-292. [
Link] [
DOI:10.2514/3.61674]
10. Balu R, Marathe AG, Paul PJ, Mukunda HS. Analysis of performance of a hot gas injection thrust vector controlsystem. Journal of Propulsion and Power. 1991;7(4):580-585. [
Link] [
DOI:10.2514/3.23365]
11. Shin CS, Kim HD, Setoguchi T, Matsuo Sh. A computational study of thrust vectoring control using dual throat nozzle. Journal of Thermal Science. 2010;19(6):486-490. [
Link] [
DOI:10.1007/s11630-010-0413-x]
12. Hojaji M, Tahani M, Salehifar M, Dartoomian A. Performance analysis of secondary injection thrust vector control. The 1st International and 3rd National Conference of Irainain Aerospace Propultion Association, 22-23 October, 2014, Isfahan, Iran. Shahinshahr: Malek-Ashtar University of Technology; 2014. [Persian] [
Link]
13. Salehifar M, Dartoomian A, hojaji M, Tahani M. Comparison of 2D and 3D analysis of secondary injection thrust vector control. The 8th Student Conference on Mechanical Engineering, 7-9 October, 2014, Rasht, Iran. Rasht: University of Guilan; 2014. [Persian] [
Link]
14. Zmijanovic V, Lago V, Sellam M, Chpoun A. Trust sock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection. Shock Waves. 2014;24(1):97-111. [
Link] [
DOI:10.1007/s00193-013-0479-y]
15. Deng R, Kong F, Kim HD. Numerical simulation of fluidic thrust vectoring in an axisymmetric supersonic nozzle. Journal of Mechanical Science and Technology. 2014;28(12):4979-4987. [
Link] [
DOI:10.1007/s12206-014-1119-x]
16. Tahani M, hojaji M, Salehifar M, Dartoomian A. Numerical investigation of sonic jet injection effects on flowfield structure and thrust vector control performance in a supersonic nozzle. Modares Mechanical Engineering. 2015;15(8):175-186. [Persian] [
Link]
17. Deng R, Setoguchi T, Kim HD. Large eddy simulation of shock vector control using bypass flow passage. International Journal of Heat and Fluid Flow. 2016;62(Part B):474-481. 24- Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [
Link]
18. Salehifar M, Tahani M, Hojaji M, Dartoomian A. CFD modeling for flow field characterization and performance analysis of HGITVC. Applied Thermal Engineering. 2016;103:291-304. [
Link] [
DOI:10.1016/j.applthermaleng.2016.02.087]
19. Li L, Hirota M, Ouchi K, Saito T. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment. Shock Waves. 2017;27(1):53-61. [
Link] [
DOI:10.1007/s00193-016-0637-0]
20. Santiago J, Dutton J. Crossflow vortices of a jet injected into a supersonic crossflow. AIAA Journal. 1997;35(5):915-917.
https://doi.org/10.2514/2.7468 [
Link] [
DOI:10.2514/3.13609]
21. Tahani M, Hojaji M, Mahmoodi Jezeh SV. Turbulent jet in crossflow analysis with LES approach. Aircraft Engineering and Aerospace Technology. 2016;88(6):717-728. [
Link] [
DOI:10.1108/AEAT-10-2014-0167]
22. Hojaji M, Soltani MR, Taeibi-Rahni M. New visions in experimental investigations of a supersonic under-expanded jet into a high subsonic crossflow. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2010;224(10):1069-1080. [
Link] [
DOI:10.1243/09544100JAERO748]
23. Viti V, Neel R, Schetz JA. Detailed flow physics of the supersonic jet interaction flow field. Physics of Fluids. 2009;21(4):046101. [
Link] [
DOI:10.1063/1.3112736]
24. Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [
Link]