مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی تاثیر برآمدگی استوانه‌ای‌شکل با میزان نفوذ متفاوت بر بردار پیش‌رانش یک نازل همگرا- واگرا در رژیم مافوق صوت

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی مهندسی، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران
چکیده
در این پژوهش، اثر یک برآمدگی استوانه‌ای‌شکل بر بردار پیش‌رانش یک جت مافوق صوت به‌عنوان یک روش جدید در کنترل بردار پیشران مورد بررسی قرار گرفت. برای این منظور، یک نازل همگرا- واگرا طراحی و ساخته شد. این نازل به‌صورتی است که عدد ماخ اسمی خروجی آن در شرایط انبساط کامل ۲ است. دیواره این نازل برای اندازه‌گیری تغییرات فشار مجهز به سوراخ‌های فشار شده است. همچنین در دیواره نازل، مجرایی برای اعمال یک برآمدگی در درون نازل ایجاد شده است. از سنسورهای فشار برای اندازه‌گیری فشار و همچنین، از سیستم شلرین برای بررسی میدان جریان خروجی از نازل بهره برده شده است. فشار کل محفظه آرامش در تمام آزمایش‌ها ثابت و برابر با ۵/۷بار است. نتایج حاصل از این تحقیق نشان می‌دهد که عمق نفوذ برآمدگی در میدان جریان، تاثیر چشمگیری بر میزان انحراف و حتی جهت انحراف جریان جت خارج‌شده از نازل همگرا- واگرا دارد. بیشترین میزان انحراف جریان جت خروجی از نازل برابر با ۵/۷درجه بوده که در نفوذ برآمدگی برابر با ۰/۴=*H/D اتفاق افتاده است. به‌علاوه این نتایج نشان می‌دهد که با افزایش میزان نفوذ برآمدگی در درون نازل، میزان تراست محوری نازل اندکی کاهش یافته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Effect of Cylindrical Protuberance with Different Penetration the Thrust Vector a C-D Nozzle in Supersonic regime

نویسندگان English

D. Mokhtari
M. Hojaji
M. Afrand
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده English

In this study, the effect of a cylindrical protuberance on the thrust vector of a supersonic jet was investigated as a new method in thrust vector control. For this purpose, a convergent-divergent nozzle was designed and constructed. This nozzle is such that the Mach number is its nominal output in full expansion conditions 2. The wall of the nozzle is equipped with pressurized holes to measure pressure variations. Also, there is a duct wall in the nozzle wall to apply a protuberance inside the nozzle. Pressure sensors for pressure measurement and also the schlieren system are used to check the outlet flow field. The total pressure of the compartment is constant at all tests and is 5.7bar. The results of this study show that the depth of penetration of the protuberance in the flow field has a significant effect on the amount of deviation and even the direction of the deviation of the jet stream exited from the convergent-divergent nozzle. The maximum jet outlet flow from the nozzle is 5.7degrees, which occurred at a rate of H/D*=0/4. In addition, these results indicate that with the increase in bulge penetration within the nozzle, the nozzle axial thrust has slightly decreased.

کلیدواژه‌ها English

thrust vector control
C-D nozzle
Supersonic Flow
protuberance
experimental aerodynamics
Sutton GP, Biblarz O. Rocket propulsion elements. 7th Edition. New York: John Wiley & Sons; 2001. [Link]
Hollstein HJ. Jet tab thrust vector control. Journal of Spacecraft and Rockets. 1965;2(6):927-930. [Link] [DOI:10.2514/3.28316]
Eatough R. Jet tab thrust vector control system demonstration. 7th Propulsion Joint Specialist Conference, 14-18 June, 1971, Salt Lake City, Utah, USA. Reston: AIAA; 1971. [Link] [DOI:10.2514/6.1971-752]
Simmons JM, Gourlay CM, Leslie BA. Flow generated by ramp tabs in a rocket nozzle exhaust. Journal of Propulsion and Power. 1987;3(1):93-95. [Link] [DOI:10.2514/3.22959]
Phanindra BC, Rathakrishnan E. Corrugated tabs for supersonic jet control. AIAA Journal. 2010;48(2):453-465. [Link] [DOI:10.2514/1.44896]
Hileman J, Samimy M. Effects of vortex generating tabs on noise sources in an ideally expanded mach 1.3 jet. International Journal of Aeroacoustics. 2003;2(1):35-63. [Link] [DOI:10.1260/147547203322436935]
Živković SŽ, Milinović MM, Stefanović PL, Pavlović PB, Gligorijević NI. Experimental and simulation testing of thermal loading in the jet tabs of a thrust vector control system. Thermal Science. 2016;20(Suppl 1):S275-286. [Link] [DOI:10.2298/TSCI150914208Z]
Heidari MR, Noorolahi A. Liquid injection thrust vector control and its effective parameters. Research and development of High-Energy Materials. 2008;3(1):15-24. [Persian] 12- hojaji M, Tahani M, Salehifar M, Dartoomian A. Performance analysis of secondary injection thrust vector control. The 1st International and 3rd National Conference of Irainain Aerospace Propultion Association, 22-23 October, 2014, Isfahan, Iran. Shahinshahr: Malek-Ashtar University of Technology; 2014. [Persian] 13- Salehifar M, Dartoomian A, hojaji M, Tahani M. Comparison of 2D and 3D analysis of secondary injection thrust vector control. The 8th Student Conference on Mechanical Engineering, 7-9 October, 2014, Rasht, Iran. Rasht: University of Guilan; 2014. [Persian] 16- Tahani M, hojaji M, Salehifar M, Dartoomian A. Numerical investigation of sonic jet injection effects on flowfield structure and thrust vector control performance in a supersonic nozzle. Modares Mechanical Engineering. 2015;15(8):175-186. [Persian] 17- Deng R, Setoguchi T, Kim HD. Large eddy simulation of shock vector control using bypass flow passage. International Journal of Heat and Fluid Flow. 2016;62(Part B):474-481. 24- Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [Link]
Guhse RD, Doyle Thompson H. Some aspects of gaseous secondary injection with application to thrust vector control. Journal of Spacecraft and Rockets. 1972;9(5):291-292. [Link] [DOI:10.2514/3.61674]
Balu R, Marathe AG, Paul PJ, Mukunda HS. Analysis of performance of a hot gas injection thrust vector controlsystem. Journal of Propulsion and Power. 1991;7(4):580-585. [Link] [DOI:10.2514/3.23365]
Shin CS, Kim HD, Setoguchi T, Matsuo Sh. A computational study of thrust vectoring control using dual throat nozzle. Journal of Thermal Science. 2010;19(6):486-490. [Link] [DOI:10.1007/s11630-010-0413-x]
Hojaji M, Tahani M, Salehifar M, Dartoomian A. Performance analysis of secondary injection thrust vector control. The 1st International and 3rd National Conference of Irainain Aerospace Propultion Association, 22-23 October, 2014, Isfahan, Iran. Shahinshahr: Malek-Ashtar University of Technology; 2014. [Persian] [Link]
Salehifar M, Dartoomian A, hojaji M, Tahani M. Comparison of 2D and 3D analysis of secondary injection thrust vector control. The 8th Student Conference on Mechanical Engineering, 7-9 October, 2014, Rasht, Iran. Rasht: University of Guilan; 2014. [Persian] [Link]
Zmijanovic V, Lago V, Sellam M, Chpoun A. Trust sock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection. Shock Waves. 2014;24(1):97-111. [Link] [DOI:10.1007/s00193-013-0479-y]
Deng R, Kong F, Kim HD. Numerical simulation of fluidic thrust vectoring in an axisymmetric supersonic nozzle. Journal of Mechanical Science and Technology. 2014;28(12):4979-4987. [Link] [DOI:10.1007/s12206-014-1119-x]
Tahani M, hojaji M, Salehifar M, Dartoomian A. Numerical investigation of sonic jet injection effects on flowfield structure and thrust vector control performance in a supersonic nozzle. Modares Mechanical Engineering. 2015;15(8):175-186. [Persian] [Link]
Deng R, Setoguchi T, Kim HD. Large eddy simulation of shock vector control using bypass flow passage. International Journal of Heat and Fluid Flow. 2016;62(Part B):474-481. 24- Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [Link]
Salehifar M, Tahani M, Hojaji M, Dartoomian A. CFD modeling for flow field characterization and performance analysis of HGITVC. Applied Thermal Engineering. 2016;103:291-304. [Link] [DOI:10.1016/j.applthermaleng.2016.02.087]
Li L, Hirota M, Ouchi K, Saito T. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment. Shock Waves. 2017;27(1):53-61. [Link] [DOI:10.1007/s00193-016-0637-0]
Santiago J, Dutton J. Crossflow vortices of a jet injected into a supersonic crossflow. AIAA Journal. 1997;35(5):915-917.
https://doi.org/10.2514/2.7468 [Link] [DOI:10.2514/3.13609]
Tahani M, Hojaji M, Mahmoodi Jezeh SV. Turbulent jet in crossflow analysis with LES approach. Aircraft Engineering and Aerospace Technology. 2016;88(6):717-728. [Link] [DOI:10.1108/AEAT-10-2014-0167]
Hojaji M, Soltani MR, Taeibi-Rahni M. New visions in experimental investigations of a supersonic under-expanded jet into a high subsonic crossflow. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2010;224(10):1069-1080. [Link] [DOI:10.1243/09544100JAERO748]
Viti V, Neel R, Schetz JA. Detailed flow physics of the supersonic jet interaction flow field. Physics of Fluids. 2009;21(4):046101. [Link] [DOI:10.1063/1.3112736]
Anderson JD. Fundamentals of aerodynamics. 3rd Edition. New York: McGraw-Hill; 2001. [Link]