1. Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mechanical Systems and Signal Processing. 2014;42(1-2):314-334. [
Link] [
DOI:10.1016/j.ymssp.2013.06.004]
2. Ramos AL, Ferreira JV, Barceló J. Model-based systems engineering: An emerging approach for modern systems. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews. 2012;42(1):101-111. [
Link] [
DOI:10.1109/TSMCC.2011.2106495]
3. Kan MS, Tan ACC, Mathew J. A review on prognostic techniques for non-stationary and non-linear rotating systems. Mechanical Systems and Signal Processing. 2015;62-63:1-20. [
Link] [
DOI:10.1016/j.ymssp.2015.02.016]
4. An D, Kim NH, Choi JH. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliability Engineering & System Safety. 2015;133:223-236. [
Link] [
DOI:10.1016/j.ress.2014.09.014]
5. Rai A, Upadhyay SH. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribology International. 2016;96:289-306. [
Link] [
DOI:10.1016/j.triboint.2015.12.037]
6. Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing. 2016;27(5):1037-1048. [
Link] [
DOI:10.1007/s10845-014-0933-4]
7. Deng Y, Barros A, Grall A. Degradation modeling based on a time-dependent ornstein-uhlenbeck process and residual useful lifetime estimation. IEEE Transactions on Reliability. 2016;65(1):126-140. [
Link] [
DOI:10.1109/TR.2015.2462353]
8. Wang T. Bearing life prediction based on vibration signals: A case study and lessons learned. IEEE Conference on Prognostics and Health Management, 18-21 June 2012, Denver, CO, USA. Piscataway: IEEE; 2012. [
Link] [
DOI:10.1109/ICPHM.2012.6299547]
9. Sutrisno E, Oh H, Vasan ASS, Pecht M. Estimation of remaining useful life of ball bearings using data driven methodologies. IEEE Conference on Prognostics and Health Management, 18-21 June 2012, Denver, CO, USA. Piscataway: IEEE; 2012. [
Link] [
DOI:10.1109/ICPHM.2012.6299548]
10. Kimotho JK, Sondermann-Woelke C, Meyer T, Sextro W. Machinery prognostic method based on multi-class support vector machines and hybrid differential evolution-particle swarm optimization. Chemical Engineering Transactions. 2013;33:619-624. [
Link]
11. Hong Sh, Zhou Z, Zio E, Wang W. An adaptive method for health trend prediction of rotating bearings. Digital Signal Processing. 2014;35:117-123. [
Link] [
DOI:10.1016/j.dsp.2014.08.006]
12. Hong Sh, Zhou Z, Zio E, Hong K. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digital Signal Processing. 2014;27:159-166. [
Link] [
DOI:10.1016/j.dsp.2013.12.010]
13. Lei Y, Li N, Guo L, Li N, Yan T, Lin J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing. 2018;104:799-834. [
Link] [
DOI:10.1016/j.ymssp.2017.11.016]
14. Soualhi A, Medjaher K, Zerhouni N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement. 2015;64(1):52-62. [
Link] [
DOI:10.1109/TIM.2014.2330494]
15. Nie Y, Wan J. Estimation of remaining useful life of bearings using sparse representation method. Prognostics and System Health Management Conference (PHM), 21-23 Oct 2015, Beijing, China. Piscataway: IEEE; 2015. [
Link]
16. Zhang B, Zhang L, Xu J. Degradation feature selection for remaining useful life prediction of rolling element bearings. Quality and Reliability Engineering International. 2016;32(2):547-554. [
Link] [
DOI:10.1002/qre.1771]
17. Guo L, Gao H, Huang H, He X, Li SC. Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock and Vibration. 2016;2016:4632562. [
Link] [
DOI:10.1155/2016/4632562]
18. Mosallam A, Medjaher K, Zerhouni N. Time series trending for condition assessment and prognostics. Journal of Manufacturing Technology Management. 2014;25(4):550-567. [
Link] [
DOI:10.1108/JMTM-04-2013-0037]
19. Li N, Lei Y, Lin J, Ding SX. An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Transactions on Industrial Electronics. 2015;62(12):7762-7773. [
Link] [
DOI:10.1109/TIE.2015.2455055]
20. Wang L, Zhang L, Wang XZ. Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model. Journal of Central South University. 2015;22(12):4625-4633. [
Link] [
DOI:10.1007/s11771-015-3013-9]
21. Ahmad W, Khan SA, Islam MM, Kim JM. A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliability Engineering & System Safety. 2019;184:67-76. [
Link] [
DOI:10.1016/j.ress.2018.02.003]
22. Lei Y, Li N, Lin J. A new method based on stochastic process models for machine remaining useful life prediction. IEEE Transactions on Instrumentation and Measurement. 2016;65(12):2671-2684. [
Link] [
DOI:10.1109/TIM.2016.2601004]
23. Niu G, Qian F, Choi BK. Bearing life prognosis based on monotonic feature selection and similarity modeling. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science. 2016;230(18):3183-3193. [
Link] [
DOI:10.1177/0954406215608892]
24. Huang Z, Xu Z, Ke X, Wang W, Sun Y. Remaining useful life prediction for an adaptive skew-Wiener process model. Mechanical Systems and Signal Processing. 2017;87(Pt A):294-306. [
Link] [
DOI:10.1016/j.ymssp.2016.10.027]
25. Cheng Z. Residual useful life prediction for rolling element bearings based on multi-feature fusion regression. International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 16-18 Aug 2017, Shanghai, China. Piscataway: IEEE; 2017. [
Link] [
DOI:10.1109/SDPC.2017.54]
26. Trinh HC, Kwon YK. An empirical investigation on a multiple filters-based approach for remaining useful life prediction. Machines. 2018;6(3):35. [
Link] [
DOI:10.3390/machines6030035]
27. Ren L, Sun Y, Cui J, Zhang L. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems. 2018;48(Pt C):71-77. [
Link] [
DOI:10.1016/j.jmsy.2018.04.008]
28. Ren L, Sun Y, Wang H, Zhang L. Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access. 2018;6:13041-13049. [
Link] [
DOI:10.1109/ACCESS.2018.2804930]
29. Wang J, Liang Y, Zheng Y, Gao RX, Zhang F. An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Renewable Energy. 2019;145:642-650. [
Link] [
DOI:10.1016/j.renene.2019.06.103]
30. Boškoski P, Gašperin M, Petelin D. Bearing fault prognostics based on signal complexity and Gaussian process models. IEEE Conference on Prognostics and Health Management, 18-21 June 2012, Denver, CO, USA. Piscataway: IEEE; 2012. [
Link] [
DOI:10.1109/ICPHM.2012.6299545]
31. Guo L, Li N, Jia F, Lei Y, Lin J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing. 2017;240:98-109. [
Link] [
DOI:10.1016/j.neucom.2017.02.045]
32. Ali JB, Chebel-Morello B, Saidi L, Malinowski S, Fnaiech F. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing. 2015;56-57:150-172. [
Link] [
DOI:10.1016/j.ymssp.2014.10.014]
33. Zhao M, Tang B, Tan Q. Bearing remaining useful life estimation based on time-frequency representation and supervised dimensionality reduction. Measurement. 2016;86:41-55. [
Link] [
DOI:10.1016/j.measurement.2015.11.047]
34. Liao L, Jin W, Pavel R. Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics. 2016;63(11):7076-7083. [
Link] [
DOI:10.1109/TIE.2016.2586442]
35. Wang ZQ, Hu CH, Fan HD. Real-time remaining useful life prediction for a nonlinear degrading system in service: Application to bearing data. IEEE ASME Transactions on Mechatronics. 2018;23(1):211-222. [
Link] [
DOI:10.1109/TMECH.2017.2666199]
36. Benkedjouh T, Medjaher K, Zerhouni N, Rechak S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Engineering Applications of Artificial Intelligence. 2013;26(7):1751-1760. [
Link] [
DOI:10.1016/j.engappai.2013.02.006]
37. Lei Y, Li N, Gontarz S, Lin J, Radkowski S, Dybala J. A model-based method for remaining useful life prediction of machinery. IEEE Transactions on Reliability. 2016;65(3):1314-1326. [
Link] [
DOI:10.1109/TR.2016.2570568]
38. Kumar A, Chinnam RB, Tseng F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools. Computers & Industrial Engineering. 2019;128:1008-1014. [
Link] [
DOI:10.1016/j.cie.2018.05.017]
39. Li Y, Li H, Wang B, Gu H. Rolling element bearing performance degradation assessment using variational mode decomposition and gath-geva clustering time series segmentation. International Journal of Rotating Machinery. 2017;2017:2598169. [
Link] [
DOI:10.1155/2017/2598169]
40. Bektas O, Jones JA, Sankararaman S, Roychoudhury I, Goebel K. A neural network filtering approach for similarity-based remaining useful life estimation. The International Journal of Advanced Manufacturing Technology. 2019;101(1-4):87-103. [
Link] [
DOI:10.1007/s00170-018-2874-0]
41. Singleton RK, Strangas EG, Aviyente S. Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Transactions on Industrial Electronics. 2015;62(3):1781-1790. [
Link] [
DOI:10.1109/TIE.2014.2336616]
42. Wang Y, Peng Y, Zi Y, Jin X, Tsui KL. A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Transactions on Industrial Informatics. 2016;12(3):924-932. [
Link] [
DOI:10.1109/TII.2016.2535368]
43. Medjaher K, Zerhouni N, Baklouti J. Data-driven prognostics based on health indicator construction: Application to PRONOSTIA's data. European Control Conference (ECC), 17-19 July 2013, Zurich, Switzerland. Piscataway: IEEE; 2013. [
Link] [
DOI:10.23919/ECC.2013.6669223]
44. Loutas TH, Roulias D, Georgoulas G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression. IEEE Transactions on Reliability. 2013;62(4):821-832. [
Link] [
DOI:10.1109/TR.2013.2285318]
45. Pan Y, Er MJ, Li X, Yu H, Gouriveau R. Machine health condition prediction via online dynamic fuzzy neural networks. Engineering Applications of Artificial Intelligence. 2014;35:105-113. [
Link] [
DOI:10.1016/j.engappai.2014.05.015]
46. Fumeo E, Oneto L, Anguita D. Condition based maintenance in railway transportation systems based on big data streaming analysis. Procedia Computer Science. 2015;53:437-446. [
Link] [
DOI:10.1016/j.procs.2015.07.321]
47. Liu Y, Hu X, Zhang W. Remaining useful life prediction based on health index similarity. Reliability Engineering & System Safety. 2019;185:502-510. [
Link] [
DOI:10.1016/j.ress.2019.02.002]
48. Javed K, Gouriveau R, Zerhouni N. Novel failure prognostics approach with dynamic thresholds for machine degradation. 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), 10-13 Nov 2013, Vienna, Austria. Piscataway: IEEE; 2013. [
Link] [
DOI:10.1109/IECON.2013.6699844]
49. Tian Z. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing. 2012;23(2):227-237. [
Link] [
DOI:10.1007/s10845-009-0356-9]
50. Javed K, Gouriveau R, Zemouri R, Zerhouni N. Features selection procedure for prognostics: An approach based on predictability. IFAC Proceedings Volumes. 2012;45(20):25-30. [
Link] [
DOI:10.3182/20120829-3-MX-2028.00165]
51. Pearson RK. Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology. 2002;10(1):55-63. [
Link] [
DOI:10.1109/87.974338]
52. Narendra Babu C, Eswara Reddy B. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Applied Soft Computing. 2014;23:27-38. [
Link] [
DOI:10.1016/j.asoc.2014.05.028]
53. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences. 1984;10(2-3):191-203. [
Link] [
DOI:10.1016/0098-3004(84)90020-7]
54. Aguayo L, Barreto GA. Novelty Detection in Time Series Using Self-Organizing Neural Networks: A Comprehensive Evaluation. Neural Processing Letters. 2018;47(2):717-744. [
Link] [
DOI:10.1007/s11063-017-9679-2]
55. Cheng C, Sa-Ngasoongsong A, Beyca O, Le T, Yang H, Kong ZJ, et al. Time series forecasting for nonlinear and non-stationary processes: A review and comparative study. IIE Transactions. 2015;47(10):1053-1071. [
Link] [
DOI:10.1080/0740817X.2014.999180]
56. Cempel C. Simple condition forecasting techniques in vibroacoustical diagnostics. Mechanical Systems and Signal Processing. 1987;1(1):75-82. [
Link] [
DOI:10.1016/0888-3270(87)90084-7]
57. Elghazel W, Bahi J, Guyeux C, Hakem M, Medjaher K, Zerhouni N. Dependability of wireless sensor networks for industrial prognostics and health management. Computers in Industry. 2015;68:1-5. [
Link] [
DOI:10.1016/j.compind.2014.10.004]
58. Ordóñez C, Lasheras FS, Roca-Pardiñas J, de Cos Juez FJ. A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines. Journal of Computational and Applied Mathematics. 2019;346:184-191. [
Link] [
DOI:10.1016/j.cam.2018.07.008]
59. Pham HT, Tran VT, Yang BS. A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting. Expert Systems with Applications. 2010;37(4):3310-3317. [
Link] [
DOI:10.1016/j.eswa.2009.10.020]
60. Song Y, Liu D, Yang C, Peng Y. Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery. Microelectronics Reliability. 2017;75:142-153. [
Link] [
DOI:10.1016/j.microrel.2017.06.045]
61. Zhou Y, Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectronics Reliability. 2016;65:265-273. [
Link] [
DOI:10.1016/j.microrel.2016.07.151]
62. Hinchi AZ, Tkiouat M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia Computer Science. 2018;127:123-132. [
Link] [
DOI:10.1016/j.procs.2018.01.106]
63. Rai A, Upadhyay SH. The use of MD-CUMSUM and NARX neural network for anticipating the remaining useful life of bearings. Measurement. 2017;111:397-410. [
Link] [
DOI:10.1016/j.measurement.2017.07.030]
64. Ali JB, Fnaiech N, Saidi L, Chebel-Morello B, Fnaiech F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics. 2015;89:16-27. [
Link] [
DOI:10.1016/j.apacoust.2014.08.016]
65. Samanta B, Al-Balushi KR. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing. 2003;17(2):317-328. [
Link] [
DOI:10.1006/mssp.2001.1462]
66. Zheng X, Fang H. An integrated unscented Kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliability Engineering & System Safety. 2015;144:74-82. [
Link] [
DOI:10.1016/j.ress.2015.07.013]
67. Andre D, Nuhic A, Soczka-Guth T, Sauer DU. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Engineering Applications of Artificial Intelligence. 2013;26(3):951-961. [
Link] [
DOI:10.1016/j.engappai.2012.09.013]
68. Cui L, Wang X, Xu Y, Jiang H, Zhou J. A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing. Measurement. 2019;135:678-684. [
Link] [
DOI:10.1016/j.measurement.2018.12.028]
69. Li YS, Billington S, Zhang C, Kurfess T, Danyluk S, Liang S. Adaptive prognostics for rolling element bearing condition. Mechanical Systems and Signal Processing. 1999;13(1):103-113. [
Link] [
DOI:10.1006/mssp.1998.0183]
70. Hamilton JD. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society. 1989;57(2):357-384. [
Link] [
DOI:10.2307/1912559]
71. Perlin M. MS_Regress-the Matlab package for markov regime switching models. SSRN. 2015 Apr. [
Link]
72. Shafer G. A mathematical theory of evidence. Princeton: Princeton University Press; 1976. [
Link]
73. Sentz K. Combination of evidence in Dempster-Shafer theory. Albuquerque: Sandia National Laboratories; 2002. [
Link] [
DOI:10.2172/800792]
74. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello B, Zerhouni N, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests. IEEE International Conference on Prognostics and Health Management, PHM'12, Jun 2012, Denver, Colorado, United States. Villeurbanne: HAL; 2012. [
Link]