Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1115-1125 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alisadeghi H, Safipour H, Rezaiefard H. Numerical Simulation and Parametric Study of an Oscillating Twin-Wing Wind Generator. Modares Mechanical Engineering 2019; 19 (5) :1115-1125
URL: http://mme.modares.ac.ir/article-15-24482-en.html
1- Aerodynamics Department, Aerospace Engineering Faculty, K.N. Toosi University of Technology, Tehran, Iran , alisadeghi@kntu.ac.ir
2- Aerodynamics Department, Aerospace Engineering Faculty, K.N. Toosi University of Technology, Tehran, Iran
Abstract:   (8032 Views)
An airfoil that is heaving and pitching simultaneously may extract energy from an oncoming flow, acting as a turbine. The extracting energy from a flow is possible if the effective parameter in performance of turbine is selected properly. In this study, the theoretical performance of an oscillating twin-wing wind generator is investigated through unsteady two-dimensional laminar-flow simulations, using the commercial computational fluid dynamics code FLUENT. Computations By examining various geometric, motor, and slippery parameters and investigating the effect of each of these parameters, we present a mapping of power-extraction efficiency in the frequency and pitching amplitude domain for a NACA 0015 airfoil at a Reynolds number of 41000. Results of a parametric study show that motion-related parameters such as heaving amplitude and frequency have a strong effect on airfoil performances, whereas geometry parameters turn out to play a secondary role. A power extraction efficiency of 49% is reached by twin-wing parallel configuration. This configuration improve the efficiency by around 7% as compared to the single foil configuration.
Full-Text [PDF 1776 kb]   (5781 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/08/26 | Accepted: 2018/12/3 | Published: 2019/05/1

1. 1- McKinney W, DeLaurier J. Wingmill: An oscillating-wing windmill. Journal of Energy. 1981;5(2):109-115. [Link] [DOI:10.2514/3.62510]
2. Kinsey T, Dumas G. Testing and analysis of an oscillating hydrofoils turbine concept. ASME 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, 1-5 August, 2010, Montreal, Quebec, Canada. New York: American Society of Mechanical Engineers; 2010. [Link] [DOI:10.1115/FEDSM-ICNMM2010-30869]
3. Kinsey T, Dumas G, Lalande G, Ruel J, Mehut A, Viarouge P, et al. Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils. Renewable Energy. 2011;36(6):1710-1718. [Link] [DOI:10.1016/j.renene.2010.11.037]
4. Xiao Q, Zhu Q. A review on flow energy harvesters based on flapping foils. Journal of Fluids and Structures. 2014;46:174-191. [Link] [DOI:10.1016/j.jfluidstructs.2014.01.002]
5. Peng Z, Zhu Q. Energy harvesting through flow-induced oscillations of a foil. Physics of Fluids. 2009;21(12):123602. [Link] [DOI:10.1063/1.3275852]
6. Kinsey T, Dumas G. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA Journal. 2008;46(6):1318-1330. [Link] [DOI:10.2514/1.26253]
7. Dumas G, Kinsey T. Eulerian simulations of oscillating airfoils in power extraction regime. WIT Transactions on Engineering Science. 2006;52:245-254. [Link] [DOI:10.2495/AFM06025]
8. Kinsey T, Dumas G. Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils. Journal of Fluids Engineering. 2012;134(2):021104. [Link] [DOI:10.1115/1.4005841]
9. Kinsey T, Dumas G. Three-dimensional effects on an oscillating-foil hydrokinetic turbine. Journal of Fluids Engineering. 2012;134(7):071105. [Link] [DOI:10.1115/1.4006914]
10. Kinsey T, Dumas G. Optimal operating parameters for an oscillating foil turbine at Reynolds number 500,000. AIAA Journal. 2014;52(9):1885-1895. [Link] [DOI:10.2514/1.J052700]
11. Lefrançois J. Optimizing the efficiency of a multi-wing turbine using a Lagrangian vortex particle method [Dissertation]. Quebec: Laval University; 2008. [French] [Link]
12. Kinsey T, Dumas G. Optimal tandem configuration for oscillating-foils hydrokinetic turbine. Journal of Fluids Engineering. 2012;134(3):031103. [Link] [DOI:10.1115/1.4005423]
13. Kim J, Quang Le T, Ko JH, Sitorus PE, Tambunan IH, Kang T. Experimental and numerical study of a dual configuration for a flapping tidal current generator. Bioinspiration Biomimetics. 2015;10(4):046015. [Link] [DOI:10.1088/1748-3190/10/4/046015]
14. Jones KD, Lindsey K, Platzer MF. An investigation of the fluid-structure interaction in an oscillating-wing micro-hydropower generator. In: Chakrabarti SK, Brebbia CA, Almorza D, Gonzalez-Palma R, editors. Fluid structure interaction. Southampton: WIT Press; 2003. [Link]
15. Zhu Q, Peng Z. Mode coupling and flow energy harvesting by a flapping foil. Physics of Fluids. 2009;21(3):033601. [Link] [DOI:10.1063/1.3092484]
16. Zhu Q. Optimal frequency for flow energy harvesting of a flapping foil. Journal of Fluid Mechanics. 2011;675:495-517. [Link] [DOI:10.1017/S0022112011000334]
17. Simpson BJ. Experimental studies of flapping foils for energy extraction [Dissertation]. Cambridge: Massachusetts Institute of Technology; 2009. [Link]
18. Belyayev VV, Zuyev GV. Hydrodynamic hypothesis of school in fishes. Problems of Ichthyology. 1969;9:578-584. [Link]
19. Zhu Q, Wolfgang MJ, Yue DKP, Triantafyllou MS. Three-dimensional flow structures and vorticity control in fish-like swimming. Journal of Fluid Mechanics. 2002;468:1-28. [Link] [DOI:10.1017/S002211200200143X]
20. Deng J, Shao XM, Yu ZS. Hydrodynamic studies on two traveling wavy foils in tandem arrangement. Physics of Fluids. 2007;19(11):113104. [Link] [DOI:10.1063/1.2814259]
21. Aziz H, Mukherjee R. Vortex interaction and roll-up in unsteady flow past tandem airfoils. Journal of Applied Fluid Mechanics. 2016;9(6):3087-3100. [Link] [DOI:10.29252/jafm.09.06.24439]
22. Pourmostafa M, Ghadimi P. Investigating the interaction of two oscillating foils in tandem arrangement, using 3D unsteady boundary element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018;40:412. [Link] [DOI:10.1007/s40430-018-1323-1]
23. Ashraf MA, Young J, Lai JCS, Platzer MF. Numerical analysis of an oscillating-wing wind and hydropower generator. AIAA Journal. 2011;49(7):1374-1386. [Link] [DOI:10.2514/1.J050577]
24. Liu W, Xiao Q, Cheng F. A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspiration and biomimetics. 2013;8(3):036011. [Link] [DOI:10.1088/1748-3182/8/3/036011]
25. Wu J, Shu C, Zhao N, Yan W. Fluid dynamics of flapping insect wing in ground effect. Journal of Bionic Engineering. 2014;11(1):52-60. [Link] [DOI:10.1016/S1672-6529(14)60019-6]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.