Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1307-1317 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousazadeh M, Jahani K, Abdollahi M. Identification of Parameters of Spencer Model for a Double-Ended Magnetorheological Damper with Different Spherical Iron Carbonyl Powder Sizes. Modares Mechanical Engineering 2019; 19 (5) :1307-1317
URL: http://mme.modares.ac.ir/article-15-24502-en.html
1- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran , ka_jahani@tabrizu.ac.ir
3- Manufacturing Engineering Department, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran
Abstract:   (3090 Views)
The aim of this paper is identifying the parameters of for a double-ended magnetorheological damper with different sizes of iron- powders suspended in magnetorheological fluid. There is not any published work in literature about identification of parameters of spherical iron particles with different particle diameters in magnetorheological fluids. Hence, in at first, two different magnetorheological fluids with different diameters of iron particle and same volume percentage are prepared. Then, using a double-ended magnetorheological damper, dynamic displacement tests with harmonic excitation in different frequencies and using different electric currents are conducted. The parametric Spencer model is selected for modeling the damper and identifying its parameters. 10 parameters of this model are identified, using nonlinear least square solver and implementing for damper, using two different magnetorheological fluids in different frequencies and different electric currents. The appropriate polynomials are extracted for parameters that have systematic trends with increasing electric current. experimental hysteresis curves in different electric currents, excitation frequencies and different fluids, it is to assess the capability of Spencer model in regenerating the experimental counterparts. The comparisons of the hysteresis curves obtained from with identified parameters by the experimentally achieved counterparts show that this model has adequate compatibility with experiments in predicting force-velocity hysteresis curves. However, the implemented model has not enough success in predicting the force-displacement hysteresis curves, especially in sharp ends of the curves and force delaying regions.
Full-Text [PDF 864 kb]   (2565 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/08/27 | Accepted: 2018/12/13 | Published: 2019/05/1

References
1. Wang DH, Liao WH. Magnetorheological fluid dampers: A review of parametric modelling. Smart Materials and Structures. 2011;20(2):023001. [Link] [DOI:10.1088/0964-1726/20/2/023001]
2. Xu ZD, Jia DH, Zhang XC. Performance tests and mathematical model considering magnetic saturation for magnetorheological damper. Journal of Intelligent Material Systems and Structures. 2012;23(12):1331-1349. [Link] [DOI:10.1177/1045389X12445629]
3. Ahamed R, Ferdaus MM, Li Y. Advancement in energy harvesting magneto-rheological fluid damper: A review. Korea-Australia Rheology Journal. 2016;28(4):355-379. [Link] [DOI:10.1007/s13367-016-0035-2]
4. Ashtiani M, Hashemabadi SH, Ghaffari A. A review on the magnetorheological fluid preparation and stabilization. Journal of Magnetism and Magnetic Materials. 2015;374:716-730. [Link] [DOI:10.1016/j.jmmm.2014.09.020]
5. De Vicente J, Vereda F, Segovia-Gutiérrez JP, Del Puerto Morales M, Hidalgo-Álvarez R. Effect of particle shape in magnetorheology. Journal of Rheology. 2010;54(6):1337-1362. [Link] [DOI:10.1122/1.3479045]
6. Shah K, Choi SB. The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids. Smart Materials and Structures. 2014;24(1):015004. [Link] [DOI:10.1088/0964-1726/24/1/015004]
7. Guo YQ, Xu ZD, Chen BB, Ran CS, Guo WY. Preparation and experimental study of magnetorheological fluids for vibration control. International Journal of Acoustics and Vibration. 2017;22(2):194-201. [Link] [DOI:10.20855/ijav.2017.22.2464]
8. Mousazadeh M. Modeling Secondary Semi Active Suspention System with Magnetorheological dampers to Control Vibration of Sensitive payloads in Commercial vehicle [Dissertation]. Tabriz: University of Tabriz; 2018 [Persian] [Link]
9. Yang G. Large-scale magnetorheological fluid damper for vibration, mitigation: Modeling, testing and control [Dissertation]. Notre Dame: University of Notre Dame; 2001. [Link]
10. Ahmadian M, Poynor JC. An evaluation of magneto rheological dampers for controlling gun recoil dynamics. Shock and Vibration. 2001;8(3-4):147-155. [Link] [DOI:10.1155/2001/674830]
11. Sun SS, Ning DH, Yang J, Du H, Zhang SW, Li WH. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Materials and Structures. 2016;25(10):105032. [Link] [DOI:10.1088/0964-1726/25/10/105032]
12. Mao M, Hu W, Choi YT, Wereley NM. A magnetorheological damper with bifold valves for shock and vibration mitigation. Journal of Intelligent Material Systems and Structures. 2007;18(12):1227-1232. [Link] [DOI:10.1177/1045389X07083131]
13. Wang Q, Ahmadian M, Chen Z. A novel double-piston magnetorheological damper for space truss structures vibration suppression. Shock and Vibration. 2014;2014:864765. [Link]
14. Adibi H, Yarali E, RamezanShams AH. Design, fabricate and testing the novel magnetorheologic damper involving stabilizer nanoparticles of silicone. Modares Mechanical Engineering. 2017;17(8):252-258. [Persian] [Link]
15. Kwok NM, Ha QP, Nguyen MT, Li J, Samali B. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions. 2007;46(2):167-179. [Link] [DOI:10.1016/j.isatra.2006.08.005]
16. Lau YK, Liao WH. Design and analysis of magnetorheological dampers for train suspension. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit. 2005;219(4):261-276. [Link] [DOI:10.1243/095440905X8899]
17. Yang G, Spencer BF, Jung HJ, David Carlson J. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. Journal of Engineering Mechanics. 2004;130(9):1107-1114. [Link] [DOI:10.1061/(ASCE)0733-9399(2004)130:9(1107)]
18. Kwok NM, Ha QP, Nguyen TH, Li J, Samali B. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A Physical. 2006;132(2):441-451. [Link] [DOI:10.1016/j.sna.2006.03.015]
19. Peng Y, Yang J, Li J. Parameter identification of modified Bouc-Wen model and analysis of size effect of magnetorheological dampers. Journal of Intelligent Material Systems and Structures. 2018;29(7):1464-1480. [Link] [DOI:10.1177/1045389X17740963]
20. Kamble VG, Kolekar Sh, Madivalar Ch. Preparation of magnetorheological fluids using different carriers and detailed study on their properties. American Journal of Nanotechnology. 2015;6(1):7-15. [Link] [DOI:10.3844/ajnsp.2015.7.15]
21. Kiyumarsi E, Jalali A, Norouzi M, Ghatee M. An experimental investigation of iron based magnetorheological fluid stability and rheology. Modares Mechanical Engineering. 2016;16(2):301-308. [Persian] [Link]
22. Kolekar Sh. Preparation of magnetorheological fluid and study on its rheological properties. International Journal of Nanoscience. 2014;13(2):1450009. [Link] [DOI:10.1142/S0219581X14500094]
23. Sonawane AV, More CS, Bhaskar SS. A study of properties, preparation and testing of magneto-rheological (MR) fluid. International Journal for Innovative Research in Science and Technology. 2016;2(9):82-86. [Link]
24. López-López MT, Kuzhir P, Lacis S, Bossis G, González-Caballero F, Durán JD. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. Journal of Physics Condensed Matter. 2006;18(38):S2803. [Link] [DOI:10.1088/0953-8984/18/38/S18]
25. Li ZX, Xu LH. Performance tests and hysteresis model of MRF-04K damper. Journal of Structural Engineering. 2005;131(8):1303-1306. [Link] [DOI:10.1061/(ASCE)0733-9445(2005)131:8(1303)]
26. Boggs PT, Tolle JW. Sequential quadratic programming. In: Cambridge University Press. Acta Numerica. 4th Volume. Cambridge: Cambridge University Press;1995. [Link] [DOI:10.1017/S0962492900002518]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.