Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 107-116 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghadiri S, Mohammadi A, Farahani M. A New Model to Predict Erosive Burning in Solid Rocket Motor. Modares Mechanical Engineering 2020; 20 (1) :107-116
URL: http://mme.modares.ac.ir/article-15-26365-en.html
1- Iranian Space Research Center, Space Transportation Research Institute, Tehran, Iran
2- Iranian Space Research Center, Space Transportation Research Institute, Tehran, Iran , mohama_a@yahoo.com
3- Aerospace Engineering Faculty, Sharif University of Technology, Tehran, Iran
Abstract:   (4230 Views)
In the present research, a new model is presented to predict the burning rate of a solid rocket motor (SRM) in the presence of erosive burning phenomenon. This model is based on the Wang model and the major modification is adding the pressure change in the erosive burning rate. In addition, the necessary relations needed to calculate the velocity gradient on the propellant surface in a one-dimensional internal ballistics code was presented. To assess the new model, the test results of a laboratory motor designed in this research were used. Also, to compare the performance and accuracy of this model with the other models, this motor was simulated with the presented model and the six available models. The results of the comparison indicate that the new model has better accuracy than the other models. The advantage of introducing the pressure effect in the Wang model has been shown. Another advantage of the new model is that this model doesn’t have any experimental constants dependent on the propellant composition or grain dimensions which is a common defect in popular models such as Lenoir-Robillard model. 
Full-Text [PDF 1118 kb]   (5136 Downloads)    
Article Type: Original Research | Subject: Experimental Fluid Mechanics
Received: 2018/10/21 | Accepted: 2019/05/4 | Published: 2020/01/20

References
1. Lenoir JM, Robillard G. A mathematical method to predict the effects of erosive burning in solid-propellant rockets. In: Reinhold Publishing Corporation. Symposium (international) on combustion. New York: Reinhold Publishing Corporation; 1957. pp. 663-667. [Link] [DOI:10.1016/S0082-0784(57)80092-7]
2. Mukunda HS, Paul PJ. Universal behaviour in erosive burning of solid propellants. Combustion and Flame. 1997;109(1-2):224-236. [Link] [DOI:10.1016/S0010-2180(96)00150-2]
3. Green LJ. Erosive burning of some composite solid propellants. Journal of Jet Propulsion. 1954;24(1):9-15. [Link] [DOI:10.2514/8.6439]
4. Kreidler JW. Erosive burning-new experimental techniques and methods of analysis. Solid Propellant Rocket Conference, 1964 January 29-31, Palo Alto, California, U.S.A. Reston: AIAA; 1964. p. 155. [Link] [DOI:10.2514/6.1964-155]
5. Hasegawa H, Hanzawa M, Tokudome SI, Kohno M. Erosive burning of aluminized composite propellants: X-ray absorption measurement, correlation, and application. Journal of Propulsion and Power. 2006;22(5):975-983. [Link] [DOI:10.2514/1.7950]
6. Greatrix DR. Model for prediction of negative and positive erosive burning. Canadian Aeronautics and Space Journal. 2007;53(1):13-21. [Link] [DOI:10.5589/q07-002]
7. Wang Q. Development of erosive burning models for CFD predictions of solid rocket motor internal environments. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003 July 20-23, Huntsville, Alabama, United States. Reston: AIAA; 2003. [Link] [DOI:10.2514/6.2003-4809]
8. Landsbaum EM. Erosive burning of solid rocket propellants-a revisit. Journal of Propulsion and Power. 2005;21(3):470-477. [Link] [DOI:10.2514/1.5234]
9. Willcox MA, Brewster MQ, Tang KC, Stewart DS, Kuznetsov I. Solid rocket motor internal ballistics simulation using three-dimensional grain burnback. Journal of Propulsion and Power. 2007;23(3):575-584. [Link] [DOI:10.2514/1.22971]
10. Javed A, Sundaram IA, Chakraborty D. Internal ballistic code for solid rocket motors using minimum distance function for grain burnback. Defence Science Journal. 2015;65(3):181-188. [Link] [DOI:10.14429/dsj.65.8304]
11. Cavallini E, Favini B, Di Giacinto M, Serraglia F. Internal ballistics simulation of a NAWC tactical SRM. Journal of Applied Mechanics. 2011;78(5):051018. [Link] [DOI:10.1115/1.4004295]
12. Lamberty J. A report on the grain design and internal ballistic module of the improved solids performance program. 19th Aerospace Sciences Meeting, 1981 January 12-15, St. Louis, Missouri. Reston: AIAA; 1981. [Link] [DOI:10.2514/6.1981-34]
13. Mashayek F, Farzad H, Ashgriz N. A geometry independent technique for solid propellant design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 1996;210(3):209‐220. [Link] [DOI:10.1243/PIME_PROC_1996_210_365_02]
14. Kalate E, Heidari MR, Mirsajedi SM. Quasi one-dimensional simulation of two-phase flow in solid rocket motor. Journal of Energetic Materials. 2010;5(2):19‐30. [Persian] [Link]
15. Rezaian Parsa E, Mirsajedi SM. Internal Ballistics simulation of solid rocket motor considering Erosive Burning Effects. Journal of Astronautical Science and Technology. 2012;5(2):74‐79. [Persian] [Link]
16. Tavakolifar F, Fakhari MM. Experimental investigation and numerical simulation of solid fuel rocket engine internal ballistic. Journal of Solid and Fluids Mechanics. 2017;7(4):13-24. [Persian] [Link]
17. Murphy JM, Osborn JR, Zucrow MJ. An experimental investigation of the erosive burning characteristics of a nonhomogeneous solid propellant. AIAA Journal. 1965;3(3):523‐525. [Link] [DOI:10.2514/3.2896]
18. Kalyana Chakravarthy V, Iyer AS, Chakraborty D. Quasi-one-dimensional modeling of internal ballistics and axial acoustics in solid rocket Motors. Journal of Propulsion and Power. 2016;32(4):223‐233. [Link] [DOI:10.2514/1.B35754]
19. Ghelichkhani MR, Mohammadi AR, Heidari MM. Burning rate measurement of solid propellant using subscale motors. Modares Mechanical Engineering. 2015;15(3):219-230. [Persian] [Link]
20. Mikkelsen CD, Roys GP. Application of the Saderholm erosive burning model to nozzleless solid propellant rocket motors. Journal of Spacecraft and Rockets. 1984;21(1):41-46. [Link] [DOI:10.2514/3.8605]
21. Topalian V, Zhang J, Jackson TL, Isfahani AH. Numerical study of erosive burning in multidimensional solid propellant modeling. Journal of Propulsion and Power. 2011;27(4):811-821. [Link] [DOI:10.2514/1.B34090]
22. Osborn JR, Renie JP, Murphy JM. Effect of erosive burning on pressure and temperature sensitivity. Acta Astronautica. 1984;11(7-8):459-467. [Link] [DOI:10.1016/0094-5765(84)90086-9]
23. Heister SD, Landsbaum EM. Analysis of ballistic anomalies in solid rocket motors. Journal of Propulsion and Power. 1991;7(6):887. [Link] [DOI:10.2514/3.23406]
24. Greatrix DR. Scale effects on quasi-steady solid rocket internal ballistic behaviour. Energies. 2010;3(11):1790-1804. [Link] [DOI:10.3390/en3111790]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.