1. 1- Liao SJ. An approximate solution technique not dependent on small parameters: A special example. International Journal of Non Linear Mechanics. 1995;30(3):371-380. [
Link] [
DOI:10.1016/0020-7462(94)00054-E]
2. Liao Sh. Comparison between the homotopy analysis method and homotopy perturbation method. Applied Mathematics and Computation. 2005;169(2):1186-1194. [
Link] [
DOI:10.1016/j.amc.2004.10.058]
3. Motsa SS, Sibanda P, Shateyi S. A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Communications in Nonlinear Science and Numerical Simulation. 2010;15(9):2293-2302. [
Link] [
DOI:10.1016/j.cnsns.2009.09.019]
4. Poorjamshidian M, Mahjoob Moghadas S, Mottalebi AA, Sheikhi J. Forced vibration analysis of a nonlinear marine riser using homotopy analysis method. Journal of Marine Engineering. 2014;10(19):67-74. [Persian] [
Link]
5. Zamani E, Nazif HR. A novel semi analytical solution for the dynamic and heat transfer analysis of stagnation point flow using BK-HAM method. Modares Mechanical Engineering. 2017;17(3):270-280. [Persian] [
Link]
6. Di Lizia P, Armellin R, Lavagna M. Application of high order expansions of two-point boundary value problems to astrodynamics. Celestial Mechanics and Dynamical Astronomy. 2008;102(4):355-375. [
Link] [
DOI:10.1007/s10569-008-9170-5]
7. Armellin R, Di Lizia P, Topputo F, Lavagna M, Bernelli-Zazzera F, Berz M. Gravity assist space pruning based on differential algebra. Celestial Mechanics and Dynamical Astronomy. 2010;106:1. [
Link] [
DOI:10.1007/s10569-009-9235-0]
8. Di Lizia P, Armellin R, Bernelli-Zazzera F, Berz M. High order optimal control of space trajectories with uncertain boundary conditions. Acta Astronautica. 2014;93:217-229. [
Link] [
DOI:10.1016/j.actaastro.2013.07.007]
9. Di Lizia P, Armellin R, Morselli A, Bernelli-Zazzera F. High order optimal feedback control of space trajectories with bounded control. Acta Astronautica. 2014;94(1):383-394. [
Link] [
DOI:10.1016/j.actaastro.2013.02.011]
10. Morselli A, Armellin R, De Lizia P, Bernelli-Zazzera F. A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation. Advances in Space Research. 2015;55(1):311-333. [
Link] [
DOI:10.1016/j.asr.2014.09.003]
11. Witting A, Colombo C, Armellin R. Long-term density evolution through semi-analytical and differential algebra techniques. Celestial Mechanics and Dynamical Astronomy. 2017;128(4):435-452. [
Link] [
DOI:10.1007/s10569-017-9756-x]
12. Moghadasian M, Roshanian J. Continuous maneuver of unmanned aerial vehicle using high order expansions method for optimal control problem. Modares Mechanical Engineering. 2018;17(12):382-390. [Persian] [
Link]
13. Moghadasian M, Roshanian J. Semi-feedback optimal control design for nonlinear problems. Optimal Control Applications and Methods. 2018;39(2):549-562. [
Link] [
DOI:10.1002/oca.2358]
14. Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft. 1979;16(4):287-288. [
Link] [
DOI:10.2514/3.58520]
15. Moghadasian M, Roshanian J. Approximately optimal manoeuvre strategy for aero-assisted space mission. Advances in Space Research. 2019;64(2):436-450. [
Link] [
DOI:10.1016/j.asr.2019.04.003]
16. Mason JC, Handscomb DC. Chebyshev Polynomials. 1st Edition. New York: CRC Press; 2002. pp. 237-267. [
Link] [
DOI:10.1201/9781420036114]