Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1911-1922 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nozari M, Tabejamaat S, Aghayari M, Sadeghzade H. Experimental Investigation of the Performance of a Microturbine Combustion Chamber at Atmospheric Conditions Using LPG Fuel. Modares Mechanical Engineering 2020; 20 (7) :1911-1922
URL: http://mme.modares.ac.ir/article-15-32923-en.html
1- Aerospace Engineering Faculty, Amir Kabir University of Technology, Tehran, Iran
2- Aerospace Engineering Faculty, Amir Kabir University of Technology, Tehran, Iran , sadegh@aut.ac.ir
Abstract:   (1857 Views)

Combustion chamber has a crucial role in gas turbines and has a significant effect on the pollution and efficiency of them. Due to the complicated flow in combustion chambers because of high turbulence intensity, flow mixing, and flame behavior, prediction of the performance of such chambers is very complicated. There is a vital need for experimental investigations to study and understand the flame behavior in combustors. This experimental study was performed using a can type combustion chamber and LPG fuel at atmospheric conditions. First, stability curve, temperature distribution in the combustion chamber, and its exit plane in 6 flow conditions and then flow behavior were evaluated. The pollution at the outlet was obtained in different conditions and equivalence ratios. The results show that the flame tends to go downstream of the combustion chamber when the fuel mass flow rate increases (or in other words, by increasing the equivalence ratio) in constant air mass flow rate and finally exits from the chamber. By increasing the air mass flow rate in constant fuel mass flow rate, CO pollution is increased, and NOx pollution is decreased.

Full-Text [PDF 944 kb]   (627 Downloads)    
Article Type: Original Research | Subject: Combustion
Received: 2019/05/13 | Accepted: 2020/05/4 | Published: 2020/05/30

1. Datta A, Som SK. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl condition. Applied Thermal Engineering. 1999;19(9):949-967. [Link] [DOI:10.1016/S1359-4311(98)00102-1]
2. Lefebvre AH. Fuel effects on gas turbine combustion-liner temperature,pattern factor, and pollutant emissions. Aircraftt Journal. 1984;21(11):887-898. [Link] [DOI:10.2514/3.45059]
3. Shyy W, Correa SM, Braaten ME. Computation of flow in a gas turbine combustor. Combustion Science and Technology. 1988;58(1-3):97-117. [Link] [DOI:10.1080/00102208808923958]
4. Vranos A, Taback ED. Combustion product distributions in the primary zone of a gas turbine combustor. Combustion and Flame. 1976;26:129-131. [Link] [DOI:10.1016/0010-2180(76)90063-8]
5. Topal A, Turan O. One dimensional liner temperature prediction in a tubular combustor. Energy. 2019;171:1100-1106. [Link] [DOI:10.1016/j.energy.2019.01.027]
6. Heitor MV, Whitelaw JH. Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combustion and Flame. 1986;64(1):1-32. [Link] [DOI:10.1016/0010-2180(86)90095-7]
7. Shah RD, Banerjee J. Thermal and emission characteristics of a CAN combustor. Heat and Mass Transfer. 2015;52(3):499-509. [Link] [DOI:10.1007/s00231-015-1572-9]
8. Rajpara P, Dekhatawala A, Shah R, Banerjee J. Influence of fuel injection method on performance of upward swirl can-type combustor. Applied Thermal Enginnering. 2018;130:319-330. [Link] [DOI:10.1016/j.applthermaleng.2017.11.017]
9. Paul MC, Jones WP. Radiative heat transfer in a model gas turbine combustor. Advanced Computational Methods in Heat Transfer IX. 2006;53:413-421. [Link] [DOI:10.2495/HT060401]
10. Ben Sik Ali A, Kriaa W, Mhiri H, Bournot P. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber. Heat and Mass Transfer. 2011;48(5):779-788. [Link] [DOI:10.1007/s00231-011-0932-3]
11. Li L, Liu T, Peng XF. Flow characteristics in an annular burner with fully film cooling. Applied Thermal Engineering. 2005;25(17-18):3013-3024. [Link] [DOI:10.1016/j.applthermaleng.2005.03.009]
12. Hill SC, Douglas Smoot L. Modeling of nitrogen oxides formation and destruction in combustion systems. Progess in Energy and Combustion Science. 2000;26(4-6):417-458. [Link] [DOI:10.1016/S0360-1285(00)00011-3]
13. Rajpara P, Shah R, Banerjee J. Effect of hydrogen addition on combustion and emission characteristics of methane fuelled upward swirl can combustor. International Journal of Hydrogen Energy. 2018;43(36):17505-17519. [Link] [DOI:10.1016/j.ijhydene.2018.07.111]
14. Kotzer C, LaViolette M, Allan W. Effects of Combustion Chamber Geometry Upon Exit Temperature Profiles. In ASME Turbo Expo 2009: Power for Land, Sea, and Air, 8-12 June 2009, Orlando, United States. New York: ASME; 2009. [Link] [DOI:10.1115/GT2009-60156]
15. Kankashvar B, Tabejamaat S, Eidi Attar Zade M, Sadat Akhavi MR, Aghayari M. Experimentally investigation of flame temperature distribution inside a CAN type combustor. Fuel and Combustion. 2018;11(2):51-67. [Link]
16. Hill SC, Smoot LD. Modeling of nitrogen oxides formation and destruction in combustion systems. Progess in Energy and Combustion Science. 2000;26(4-6):417-458. [Link] [DOI:10.1016/S0360-1285(00)00011-3]
17. Bulat G, Jones W, Marquis A. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combustion and Flame. 2014;161(7):1804-1825. [Link] [DOI:10.1016/j.combustflame.2013.12.028]
18. Bhangu JK, Snape DM, Eardley BR. The design and development of a low emissions transply combustor for the civil spey engine [Internet]. London: Rolls royce limited; 1984 [Cited Unknown Year Unknown Month Unknown Day]. Available from: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902029069263763 [Link]
19. Azimi AH, Eidi Attar Zade M, Tabejamaat S, Oni A, Zahab S, Bal Zade MM, et al. Designing a gas turbine combustor test rig and testing a sample combustor at atmospheric conditions. Fuel and Combustion. 2017;10(1):87-104. [Link]
20. Lefebvre AH, Ballal DR. Gas turbine combustion: alternative fuels and emissions. Boca raton: CRC press; 2010 [Link] [DOI:10.1201/9781420086058]
21. Bicen AF, Tse D, Whitelaw JH. Flow and combustion characteristics of an annular combustor. Combustion and Flame. 1988;72(2):175-192. [Link] [DOI:10.1016/0010-2180(88)90117-4]
22. Bicen AF, Senda M, Whitelaw JH. Scalar characteristics of combusting flow in a model annular combustor. Journal of Engineering for Gas Turbines and Power. 1989;111(1):90-96. [Link] [DOI:10.1115/1.3240233]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.