Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1625-1634 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alem S, Sabooni E, Sheikholeslam F, Izadi I. Adaptive Robust Controller for Position Control of Piezoelectric Actuator with Unstructured Uncertainty. Modares Mechanical Engineering 2020; 20 (6) :1625-1634
URL: http://mme.modares.ac.ir/article-15-35035-en.html
1- Control Department, Electrical & Computer Engineering Faculty, Isfahan University of Thechnology, Isfahan, Iran
2- Control Department, Electrical & Computer Engineering Faculty, Isfahan University of Thechnology, Isfahan, Iran , sheikh@cc.iut.ac.ir
Abstract:   (3604 Views)
Piezoelectric actuators are the most common choice for position control with ultra-high precision. Despite the significant advantages, the linear and nonlinear dynamics of these actuators, such as hysteresis, could decrease the precision of the control system. In this research, a controller based on the sliding mode method is proposed for position control of piezoelectric actuator. Sliding mode control is a model-based and useful method in nanopositioning systems. In this research, Bouc-Wen model is used for description of the actuator’s behavior. In this model, the linear dynamic is modeled with mass, stiffness and damping terms, and the hysteresis is modeled by its nonlinear dynamics. Usually, there are mismatch and uncertainty between the physical system and mathematical model. For stability analysis of the prevalent sliding mode control, the upper bound of uncertainty must be known. But, in practical systems, this is not possible, simply. On the other hand, selecting the large values for this bound, increases the controller gain and distances it from the optimum value. The proposed adaptive robust control eliminates the dependency to the upper bound of uncertainty. This is done by introducing an online adaptive law for estimating this bound. Proposing this law, asymptotic stability of the closed-loop control system is proven. Implementing the presented method on the laboratory setup and simulator software, its effectiveness is shown by simulation and experimental results.
Full-Text [PDF 598 kb]   (1821 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/07/22 | Accepted: 2019/12/14 | Published: 2020/06/20

References
1. Smith RC. Smart material systems: model development. University City, Philadelphia: Society for Industrial and Applied Mathematics; 2005. [Link] [DOI:10.1137/1.9780898717471]
2. Kuiper S, Schitter G. Model-based feedback controller design for dual actuated atomic force microscopy. Mechatronics. 2012;22(3):327-337. [Link] [DOI:10.1016/j.mechatronics.2011.08.003]
3. Li G, Su H, Cole GA, Shang W, Harrington K, Camilo A, Pilitsis JG, et al. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Transactions on Biomedical Engineering. 2014;62(4):1077-1088. [Link] [DOI:10.1109/TBME.2014.2367233]
4. Su H, Li G, Rucker DC, Webster III RJ, Fischer GS. A concentric tube continuum robot with piezoelectric actuation for MRI-guided closed-loop targeting. Annals of Biomedical Engineering. 2016;44(10):2863-2873. [Link] [DOI:10.1007/s10439-016-1585-7]
5. Devasia S, Eleftheriou E, Moheimani SR. A survey of control issues in nanopositioning. IEEE Transactions on Control Systems Technology. 2007;15(5):802-823. [Link] [DOI:10.1109/TCST.2007.903345]
6. Muraoka M, Sanada S. Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism. Sensors and Actuators A: Physical. 2010 ;157(1):84-90. [Link] [DOI:10.1016/j.sna.2009.10.024]
7. Breguet JM, Driesen W, Kaegi F, Cimprich T. Applications of piezo-actuated micro-robots in micro-biology and material science. International Conference on Mechatronics and Automation; 2007 Aug 5; Harbin, China: IEEE (Institute of Electrical and Electronics Engineers); pp. 57-62. [Link] [DOI:10.1109/ICMA.2007.4303516]
8. Kuhn S, Noël T, Gu L, Heider PL, Jensen KF. A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. Lab on a Chip. 2011;11(15):2488-2492. [Link] [DOI:10.1039/c1lc20337a]
9. Ko HP, Jeong H, Koc B. Piezoelectric actuator for mobile auto focus camera applications. Journal of electroceramics. 2009;23(2-4):530-535. [Link] [DOI:10.1007/s10832-008-9529-8]
10. Bruant I, Gallimard L, Nikoukar S. Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. Journal of Sound and Vibration. 2010;329(10):1615-1635. [Link] [DOI:10.1016/j.jsv.2009.12.001]
11. Xiao S, Li Y. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model. IEEE Transactions on Control Systems Technology. 2012;21(5):1549-1557. [Link] [DOI:10.1109/TCST.2012.2206029]
12. Mokaberi B, Requicha AA. Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Transactions on Automation Science and Engineering. 2008;5(2):197-206. [Link] [DOI:10.1109/TASE.2007.895008]
13. Hassani V, Tjahjowidodo T, Do TN. A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing. 2014;49(1-2):209-233. [Link] [DOI:10.1016/j.ymssp.2014.04.012]
14. Al Janaideh M, Krejčí P. Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics. 2012;18(5):1498-1507. [Link] [DOI:10.1109/TMECH.2012.2205265]
15. Alem SF, Izadi I, Sheikholeslam F. Adaptive sliding mode control of hysteresis in piezoelectric actuator. IFAC-PapersOnLine. 2017;50(1):15574-15579. [Link] [DOI:10.1016/j.ifacol.2017.08.1883]
16. Li Y, Xu Q. Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Transactions on control systems technology. 2009;18(4):798-810. [Link] [DOI:10.1109/TCST.2009.2028878]
17. Lin CJ, Lin PT. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Computers & Mathematics with Applications. 2012;64(5):766-787. [Link] [DOI:10.1016/j.camwa.2011.12.015]
18. Alem SF, Izadi I, Sheikholeslam F, Ekramian M. Piezoelectric Actuators with Uncertainty: Observer-Based Hysteresis Compensation and Joint Stability Analysis. IEEE Transactions on Control Systems Technology. 2019;99-1-8. [Link] [DOI:10.1109/TCST.2019.2922624]
19. Driessen BJ, Kondreddi S. Tracking observer/controller for a relatively large class of systems with hysteresis and without velocity measurement. Systems & Control Letters. 2009;58(1):26-30. [Link] [DOI:10.1016/j.sysconle.2008.07.006]
20. Shen JC, Jywe WY, Liu CH, Jian YT, Yang J. Sliding‐mode control of a three‐degrees‐of‐freedom nanopositioner. Asian Journal of Control. 2008;10(3):267-276. [Link] [DOI:10.1002/asjc.33]
21. Slotine JJ, Li W. Applied nonlinear control. New York City: Pearson; 1991. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.